

 Implementing Concurrent Programming Facilities on a
 Uniprocessor Machine
 Using Concurrent Pascal-S

 Michael Camillone
 Master of Science Thesis
 CS 694
 Pace University
 Professor C.T. Zahn
 March, 1992

INTRODUCTION AND HISTORY

 The use of parallel computers has not yet reached the level of the smaller university;

therefore, the only way to gain hands-on experience with parallel programming is through

simulation. This involves using a PC and a software package designed to emulate multiprocessor

activity on a uniprocessor machine. Such a software package is Concurrent Pascal-S, whose

description and history follow. (Note: Although similar in name, this package is not related to

Brinch Hansen's Concurrent Pascal implementation [4].)

 The original Pascal-S compiler/interpreter was written by N. Wirth in 1976. It was able to

compile a subset of Pascal into P-code (pseudo-code), each instruction consisting of an instruction

field and zero, one, or two operands. Once the program was entirely compiled, the instruction set

was then interpreted to simulate execution on a hypothetical stack machine. The stack was used for

all runtime computation; therefore, there was no need for registers or other temporary storage places.

 There were no facilities for concurrent programming in the original Pascal-S.

 M. Ben-Ari modified Wirth's original compiler/interpreter in 1980 to include some basic

features that were able to simulate concurrent programming. First, a cobegin s1; ...; sn coend block

structure was added, allowing concurrent execution of the statements s1 ... sn, which were required to

be global procedure calls. These cobegin ... coend blocks could not be nested within one another.

Second, the use of semaphores was introduced, with a semaphore data type (really synonymous with

the integer data type) and the semaphore operations wait(s) and signal(s), corresponding to

Dijkstra's P(s) and V(s), respectively. The remaining features of the Pascal subset compiled by Ben-

Ari's kit can be found in the Appendix of [3]. Concurrent process execution was simulated by letting

each process use the PC's processor for a random amount of time, and then giving all other processes

a turn for another random amount of time. In this context, "time" refers to a count of instruction

 2

executions, making the simplifying assumption that each instruction takes the same amount of time

to execute. This procedure is called process switching, and it tries to best emulate the results that

would be produced on a true multiprocessor machine.

 The next modification of the Concurrent Pascal-S compiler was done by C.T. Zahn in 1988,

implementing the package using Borland's Turbo Pascal. Zahn modified the cobegin ... coend

syntax, replacing the semicolon with a vertical bar as the separator between concurrent execution

calls. Also, regular program statements, as well as global procedure calls, were now allowed to be

placed within the cobegin ... coend block, and these blocks could now be nested within one another.

 The code for cobegin and coend was modified as well, so that the concurrent processes signified

within the block were treated as child processes forked by a parent process. After all the child

processes have been forked, i.e. the coend keyword has been encountered, the parent process is put

to sleep and does not execute any instructions until all its child processes are killed (finished

executing). There is a limited number of "processors" available in the implementation, controlled by

the constant pmax. Therefore, by simply changing the value of this constant, the user can simulate

execution of the same program on a "machine" with different numbers of processors. When a parent

attempts to fork a child, a wait is performed on the internal semaphore FBSema, the Free Block

Semaphore. Free blocks correspond to processors currently not in use. FBSema checks to see if

there is a free block eligible for use by the child process; if there is not, the parent process is

temporarily suspended until a block becomes available.

 Another key revision made by Zahn was the implementation of a circular Ready Queue

containing all processes eligible for execution at any given moment. The scheduling was done via a

round-robin approach using a time-slice quantum (a random number chosen from within a given

 3

interval) to determine the amount of time each process had to use the processor for a given turn of

execution. The Ready Queue made use of the already existing ptab processor table to simulate a

linked list of processes by having each entry in the table have a nextp field that contained the index

of another process. The queue was circular, so the last process in the list points to the first process.

 At this time the reader should have a good grasp of the Wirth/Ben-Ari/Zahn Concurrent

Pascal-S kit in order to fully understand the newest set of changes that have been made. The first

modification involves keeping accurate track of the time of execution of each process in a given

program in order to give the user access to various statistics about the program's performance. The

key assumption made here is that one machine instruction equals one time unit; this assumption was

made in order to simplify the duties of time-keeping. The second modification is the addition of a

CSP/Occam-type synchronous message-passing scheme via the declaration of channels, the

functions send and receive, and a guarded command structure using the keyword select. A

description of these modifications will comprise the remainder of this paper, and they involve a

fairly detailed description of the Pascal code in which the kit has been written.

TIMING AND STATISTICS

Process switching

 In the existing implementation, process switching was performed by way of the variable

stepcount and the procedure setquantum. Upon a call to setquantum, stepcount would be

assigned a random value representing the number of machine instructions to be executed for the

given turn. After that number of instructions has been performed and stepcount is reduced to zero,

we say that the process will be "timed out," meaning that another process (if any) will now have the

 4

opportunity to use the PC's processor. Setquantum is again called to determine how many

instructions this second process is allowed to execute. This nondeterministic method of choosing

random numbers is intended to most accurately simulate the behavior of a true concurrent computer,

since multiple runs of the same program would yield different values for stepcount, yet the results

of the program should be identical. This allows the user to detect program bugs that might have

remained hidden otherwise. The randomness also simulates the unpredictability of the relative speed

of various concurrent processes running on different processors; in other words, a multiprocessor

machine may contain different kinds of processors, each with its own rate of instruction execution.

 In order to accurately keep track of each process' running time and to correctly interpret the

activity of wait and signal commands, it was necessary to perform process switches after each

instruction. This was achieved by introducing the constant USEQUANTUM; when set to false, the

setquantum procedure is never called and stepcount is always equal to zero, effectively forcing a

process switch after every instruction. When set to true, the interpreter proceeds as initially

described. To more fully understand why this change was necessary, consider the following

situation: the main program forks five child processes. The first three processes issue signals at

times 10, 20, and 30, respectively (these times, as well as all times in this example, reflect the real

time of execution over the entire program, not the time particular to any process). The fourth

process then issues a wait at time 15; naturally, it is matched with the signal at time 10 from process

one, since the other signals could not have occurred yet. Then process five issues a wait at time 5,

which will be matched with the signal at time 20; but was it really intended to be matched with the

signal at time 10? There is no way to know for sure. So depending on the values given to

stepcount throughout the program, different results may occur, thus defeating the nondeterministic

 5

approach that needs to be achieved. Process switching after each instruction solves this problem,

since it keeps the real time of all processes synchronized.

The processor table

 The ptab processor table is the main data structure of the Concurrent Pascal-S kit. It is an

array of pmax+1 records that contain key descriptive information about each process that is

currently running. Several fields were added to the record data structure in order to keep track of

each process' running and waiting times. The most important of these fields are tstart, which

records the real time that a process began; timer, which is the running time of a process, or number

of instructions executed; and totalwait, which shows the total time that a given process has spent

waiting. An invariant of this method of timekeeping is that the current real time of any process can

be obtained at any time by adding the values of tstart, timer, and totalwait.

 Tstart of the main process is given the value of zero, since it is the first process to run.

When subsequent processes are forked, their respective tstarts are obtained by summing the values

of their parent process' tstart, timer, and totalwait, as stated in the invariant above.

 The timer field of each ptab entry is incremented by one upon execution of every

instruction. It starts out at zero, and is reset to zero when the ptab entry is returned to the free list.

 The totalwait field, as previously stated and as its name indicates, records the total time a

process has spent waiting as a result of waits, waiting for a rendezvous, or going to sleep, as a parent

process does after forking its children. ("Rendezvous" is a term that will be dealt with in greater

detail later, but suffice it to say at this point that a rendezvous occurs when two processes come to a

point in their execution where a "sending" process sends information to a "receiving" process, and

 6

then each process goes about its own duties.) The calculation of waiting time involves the use of

another new ptab field called tblocked. When a process encounters a semaphore wait, waits for a

rendezvous, or goes to sleep, tblocked records the current time by summing tstart, timer, and

totalwait. When the corresponding signal is issued, the rendezvous is accomplished, or the process

wakes up from sleeping, the value of tblocked is subtracted from the current time of the signalling

process, and this new value is added to totalwait.

 A fifth field that was added to ptab is procno, which is used to uniquely identify a process.

Its use is described in greater detail in the discussion of sumtab below.

Wait and Signal times

 Upon conclusion of the user program's execution, a runtime graph is displayed tracing the

activity of each processor throughout the program. In order to show when a process was in a

waiting or sleeping state, it is necessary to keep track of the times that each process was blocked and

when each process resumed execution. These times are stored in a new data structure, which is a

linked list of waitnodes. Each waitnode contains wait and signal fields, as well as a next field

which is a pointer to the next node. This list is part of the sumtab structure described below.

 Two new procedures were written to populate the fields of this linked list. AddWait

searches to the end of the list and then creates a new node, assigning to its wait field the value of the

time the wait command is being issued, the rendezvous is sought, or the process goes to sleep.

Similarly, AddSignal searches the list until it finds the first node with a wait time but no signal time,

and then fills in the signal field.

 7

Granularity

 As pointed out in [15], in every concurrent program there is more absolute work done than in

an equivalent serial program on account of the overhead involved in administering the concurrency.

For this reason, a statistic that concurrent programmers are frequently interested in is the granularity

of an application. Granularity is a ratio of this overhead to the actual work being performed. "Fine-

grained" applications are those in which the amount of work approaches the amount of overhead (i.e.

the ratio approaches 1); "coarse-grained" applications perform large amounts of work compared to

relatively little overhead.

 In the Concurrent Pascal-S kit, the concurrency overhead amounts to five instructions per

process: load FBSema; wait; fork; jump; kill. Finding the total overhead, therefore, only requires

keeping track of the number of forks performed throughout the program and multiplying this number

by five. For this reason, the variable numforks has been introduced into the program. Its use is

simple as it only needs to be incremented when a fork statement is encountered. At the conclusion

of the program, this overhead figure is taken and divided into the total number of instructions

executed throughout the entire program; this percentage is the granularity of the application.

The summary table

 If the reader has not already noticed, there is a problem with the method of using the ptab

entries to store all information about processes if we want to recall all this information at the

program's termination. Suppose, for example, that we allow our implementation to have ten

processors (ten ptab entries). During program execution, ten processes are forked, each occupying

one of the ten processors. Subsequently, an eleventh process is forked; it waits until a processor is

 8

free. When it is assigned a processor, that processor's ptab entry is erased to make way for the

eleventh process. There is no way to recover this information at the program's end to perform any

kind of statistics.

 To remedy this problem, a new data structure called sumtab was introduced. Intended for

use as a summary table of processes, its structure is similar to that of ptab. It is an array of records

indexed by a unique process identifier; this is the same identifier assigned to the procno field of

ptab. It has a field called processor_used, which is the index of ptab that was used by this process.

 Its next three fields are start, running, and waiting, which reflect the ptab values of tstart, timer,

and totalwait, respectively. Its final field is waitlist, which is a pointer to a set of waitnodes giving

the corresponding wait and signal times of that process. The variable proccount is used to keep

track of how many processes have lived during the program's execution, and it serves as an index

into sumtab.

 In order to transfer the ptab information to sumtab, the procedure ReportProcess was

introduced. As its name suggests, it simply reports vital process information from one table to the

other upon the process' termination.

Runtime summary

 9

 As previously mentioned, when the program has finished its execution, various statistics are

displayed to the user. By default these statistics are displayed on the screen, but the user also has the

option of redirecting the output to a disk file or the printer; this redirection is accomplished at the

command line in the following manner:

 cps <myprog.in >myprog.out

where cps is the command to invoke the Concurrent Pascal-S compiler/interpreter, myprog.in is the

file containing the user's program, and myprog.out is a file that will be created and will contain the

output generated by the kit. Alternatively, the user can specify prn in place of myprog.out in the

example above to send the output to the printer.

 The first statistic is performed by the procedure RuntimeSummary, which shows the

following information for each process: which processor it used, when it began executing, its run

time, its time spent waiting, when it finished executing, and its elapsed time (running time + time

waiting). These figures are calculated by simply accessing each record of sumtab and printing its

information. A sample runtime summary from an actual printout is shown in Figure 1.

Relative utilization

RUNTIME SUMMARY:

Process# /
Processor used Start Run time Time waiting Finish Elapsed time
 0 / 0 0 10 205 215 215
 1 / 1 3 123 88 214 211
 2 / 2 7 78 116 201 194
 3 / 3 64 36 41 141 77
 4 / 4 68 86 0 154 86
-------------- ---- ---- ----
TOTALS: 333 450 783

Figure 1: Runtime Summary

 10

 Relative utilization is a measure of the run time of a process compared to its elapsed time. In

other words, it is a percentage that expresses how much time of a process' life was spent actually

executing instructions, as opposed to time spent waiting. The procedure RelUtilization

accomplishes this task in much the same way as RuntimeSummary did its job: by displaying key

information from each sumtab entry. For each process, RelUtilization shows the process number,

the ratio of run time to run time plus wait time, and the percentage that this ratio represents. This

percentage is called the utilization of the process. The user should note that the total run time plus

the total wait time should be equal to the total elapsed time shown in the Runtime Summary.

 RelUtilization is also responsible for displaying the granularity of the application, as

discussed above in the Granularity section. Figure 2 shows a sample of both the Relative

Utilization and Granularity displays.

Absolute utilization

RELATIVE UTILIZATION PERCENTAGES (across processes):

Process# Run/ Run+Wait = Utilization
 0 10/ 10+ 205 = 4.7%
 1 123/ 123+ 88 = 58.3%
 2 78/ 78+ 116 = 40.2%
 3 36/ 36+ 41 = 46.8%
 4 86/ 86+ 0 = 100.0%
-------- -------------- ------
TOTALS: 333/ 333+ 450 = 42.5%

GRANULARITY of this application =
ratio of concurrency overhead to actual work being performed =
20 / 333 = 6.0%
(High percentage = Fine-grained; Low percentage = Coarse-grained)

Figure 2: Relative Utilization Percentages and Granularity

 11

 Whereas relative utilization is a measure of processes, absolute utilization is a measure of

processors. For each processor, the latter shows a ratio of the sum of run time and wait time as

compared to the total time the processor spent in the following three states: running, waiting, or idle.

 The terms "running" and "waiting" have been referred to before, so for the sake of clarity, it is

pointed out that "idle" refers to that time when a processor is not attached to any process; it is not

running, it is not waiting, it is simply available for use to any process that needs it.

 Calculating these numbers is not as easy as finding the relative utilizations because it is

neccessary to access all of the sumtab entries and pick out those that made use of the same

processor and sum their running and waiting times. In addition, idle times must be determined as the

sum of the times when a processor was between attachments to processes as well as the time before

its initial attachment. These figures and their corresponding percentages are then displayed. There

is also an internal check that is performed to ensure that the sum of the run and wait and idle times of

each processor are all equal. Figure 3 shows a sample of the Absolute Utilization statistics.

ABSOLUTE UTILIZATION PERCENTAGES & GRAPHS (across processors):

Processor Run+Wait/ Run+Wait+Idle = Utilization
 0 10+ 205/ 10+ 205+ 0 = 100.0%
 1 123+ 88/ 123+ 88+ 4 = 98.1%
 2 78+ 116/ 78+ 116+ 21 = 90.2%
 3 36+ 41/ 36+ 41+ 138 = 35.8%
 4 86+ 0/ 86+ 0+ 129 = 40.0%
--------- ------------------------ ------
TOTALS: 333+ 450/ 333+ 450+ 292 = 72.8%

Figure 3: Absolute Utilization Percentages

 12

 The final action performed by AbsUtilization is a call to its internal procedure BarChart.

This procedure takes the run, wait, and idle times obtained previously and displays them in bar chart

form, so that the user can get a visual sense of the activity of the program. A sample bar chart is

shown in Figure 4.

 A useful bit of information that the user can glean from both the relative and absolute

utilization percentages and graphs is the possible presence of bottlenecks in the program. If a certain

processor spent most of its time waiting, the user can see this and take appropriate actions. Also,

since the total number of processors used to execute the program is displayed, the user should note

that more processors could not have been used with the algorithm driving the program. In other

words, if the user wants to make use of more processors, the algorithm must be changed.

Runtime graph

 The final output provided to the user about his/her submitted Concurrent Pascal-S program is

a runtime graph that shows the activity of each processor throughout execution of the entire

program. The activity at each time interval is shown in the following manner:

Processor Utilization Graph
 0 ��

 1 ���-

 2 ���-------

 3 �������������������������---

 4 ����������������������������--

 ����� = Run ����� = Wait ----- = Idle

Figure 4: Absolute Utilization Graph

 13

 ! if the processor was busy executing instructions of a particular process, that process
 number is displayed
 ! if the processor was delayed on account of a semaphore, a rendezvous request, or
 sleep, a dot is displayed
 ! if the processor was idle, that space is left blank

The time interval is controlled by the variable displayincr. At the start of a run, the user can choose

between regular output mode and an "adaptive" output mode. In the case of the regular mode,

displayincr is set to 1 so the user can see every action at every time instant; in the adaptive mode,

the output is restricted so that it does not exceed a length of two pages. This latter mode is

accomplished by dividing (via div) the total execution time of the program by 100 and giving that

value to displayincr; thus, a one-unit "snapshot" is taken every displayincr units. This ensures that

the printout will not go beyond the 132-line limit of two full pages of text. Figure 5 shows a portion

of the output obtained from a particular example using the adaptive mode.

 14

RUNTIME GRAPH:
---- -------------------- Processors --------------------
Time 0 1 2 3 4 5 6 7 8 9 10
---- --
 0 0
 4 0
 8 0
 12 0
 16 0
 20 0
 24 0
 28 0 1
 32 0 1 2
 36 0 1 2 3
 40 0 . 2 3 4
 44 0 . 2 3 4 5
 48 0 1 2 3 4 5 6
 52 0 1 2 . 4 5 6 7
 56 . . 2 . . 5 6 7 8
 60 . . 2 . . . 6 7 8
 64 . . 2 3 . . . 7 8
 68 . . 2 3 8
 72 . 1 2 3
 76 . 1 2 3 4
 80 . . 2 3 4
 84 . . 2 3 4
 88 . . 2 3 4
 92 . . 2 3 4 5 . . .
 96 . 1 2 3 4 5 . . .
 100 . 1 2 3 4 5 . . .
 104 . . 2 3 4 5 . . .
 108 . . 2 3 4 5 6 . .
 112 . . 2 3 4 5 6 . .
 116 . . 2 3 4 5 6 . .
 120 . . 2 3 4 5 6 . .
 124 . 1 2 3 4 5 6 7 .
 128 . . 2 3 4 5 6 7 .
 132 . . 2 3 4 5 6 7 .
 136 . . 2 3 4 5 6 7 8
 140 . . 2 3 4 5 6 7 8
 144 . . 2 3 4 5 6 7 8
 148 . 1 2 3 4 5 6 7 .
 152 . 1 2 3 4 5 6 7 .
 156 . . 2 3 4 5 6 7 .
 160 . . 2 3 4 5 6 7 .
 164 . . 2 3 4 5 6 7 8
 168 . . 2 3 4 5 6 7 8
 172 . 1 2 3 4 5 6 7 .
 176 . 1 2 3 4 5 6 7 .
 180 . . 2 3 4 5 6 7 .
 184 . . 2 3 4 5 6 7 .
 188 . . 2 3 4 5 6 7 8
 192 . . 2 3 4 5 6 7 8
 196 . 1 2 3 4 5 6 7 .
 200 . 1 2 3 4 5 6 7 .
 204 . . 2 3 4 5 6 7 .
 208 . . 2 3 4 5 6 7 .
 212 . . 2 3 4 5 6 7 8
 216 . . 2 3 4 5 6 7 8
 220 . . 2 3 4 5 6 7 8
 224 . 1 2 3 4 5 6 7 .

Figure 5: Runtime Graph (Adaptive Mode)

 15

 In terms of the code used to write this segment, for each time interval, the procedure

DisplayGraph simply scans the sumtab entries looking for the processes that used processor 0, then

processor 1, etc., up to processor pmax. When it has found a desired sumtab entry, it checks its

beginning and end times via the start field and the sum of the start, running, and waiting fields,

respectively. If this time interval is the one sought, another check is made to see if the process was

in a delayed state, via the waitlist. If it is found to be delayed, a dot is printed; otherwise, the

process number is printed. Processors are determined to be idle for a time interval if no sumtab

entry is found such that that time interval falls between its start field and the sum of its start,

running, and waiting fields. In this case, the space under that processor for the time interval is left

blank.

View process summary table

 The procedure DumpSumtab is provided as a debugging aid to the programmer. The

contents of sumtab can be printed on the screen as part of the analysis printout if the user so chooses

at the start of the session. Internally, the state of the Boolean variable ShowInternal determines

whether or not this additional information will be displayed. These extra details consist of the index

of each sumtab entry as well as the processor_used, start, running, and waiting fields. Figure 6

shows an example of a sumtab dump.

 16

View list of wait and signal times

 Along the lines of DumpSumtab, the procedure DumpWaitlist is another debugging aid.

Also making use of the variable ShowInternal, this procedure gives the user the option of seeing the

times at which each process executed a wait (or waited for a rendezvous or was put to sleep) and the

times when they were awakened. A sample wait and signal list dump is shown in Figure 7.

Sleeping processes

 When the main process has completed forking all of its child processes, it goes to sleep and

is removed from the Ready Queue. However, in the existing implementation, the status field of the

process' ptab entry still reported that the process was in the ready state (the constant ready is really

synonymous with the value 2). This fact can cause problems with time measurements. For

Dump Sumtab:
sumtab[0] processor_used= 0 start= 0 running= 10 waiting= 205
sumtab[1] processor_used= 1 start= 3 running= 123 waiting= 88
sumtab[2] processor_used= 2 start= 7 running= 78 waiting= 116
sumtab[3] processor_used= 3 start= 64 running= 36 waiting= 41
sumtab[4] processor_used= 4 start= 68 running= 86 waiting= 0

Figure 6: Sumtab dump

Dump Waitlist:
 0) 9 & 214
 1) 16 & 19 / 76 & 161
 2) 30 & 38 / 49 & 57 / 70 & 154 / 172 & 180 / 191 & 199
 3) 76 & 81 / 88 & 100 / 107 & 119 / 126 & 138
 4) No waits.

Figure 7: Dump of Wait and Signal Times

 17

example, it is possible for the first child process forked by its parent to be so short that it completes

execution before the parent has forked its second child. When the first child executes its kill

command, it checks the parent's childcount field. If this field is equal to zero, vital time

measurements are taken and the parent is awakened and re-inserted back into the Ready Queue. In

the example at hand, though, the childcount field will be equal to zero, and even though the parent

has not yet gone to sleep because it has more children to fork, it will be "awakened" and re-inserted

into the Ready Queue prematurely. This is obviously a problem.

 The solution is simple, as it follows a simple rule: the parent cannot be awakened before it

goes to sleep! In order to implement this rule, a fifth possible processor status was added: that of

sleeping, given the value 4. This also required modifying the range of the status field of ptab to

read 0 .. 4. Now, when a parent process goes to sleep, its status is given the value sleeping. And

when a child executes a kill and checks to see if its parent should be awakened, not only does it

check the value of childcount but it also checks to see if the parent's status is sleeping. If so, the

parent is awakened and its status is returned to ready; if not, the parent is not awakened.

Access to the list of free processors

 In a true concurrent environment, we would like to disallow simultaneous access to the list

of free processors by more than one process for a given time interval. One reason for this is that

kills and forks issued at the same time are dangerous. For example, if there are no processors

available and a fork is issued, the response from the system will be to make the inquiring process

wait. If a kill is issued at the same time but dealt with by the PC's processor after it deals with the

fork, a process block will be returned to the free list. So why did the process desiring to be forked

 18

have to wait if a process block was indeed available at that time interval? The problem is now

obvious.

 There are various ways to solve this problem in the Concurrent Pascal-S implementation. A

mutex semaphore could be used to ensure mutual exclusion with regard to access of the free list.

Alternatively, an internal check could be made inside the program to disallow forks and kills at the

same time. A third method, however, was chosen that has the same desired effect. After each

process completes an instruction, the interpreter checks to see if its next instruction will be a kill

instruction. If it is not, this process will be put at the end of the Ready Queue as usual. If it is, this

process will be inserted into the Ready Queue so that it is at the beginning of the next executing time

interval. In other words, for each time interval, the interpreter will always execute all kill

instructions first (if any). That way, when subsequent fork instructions are encountered, all possible

process blocks will have been returned to the free list.

SYNCHRONOUS MESSAGE PASSING

Reasons for implementation

 The implementation of concurrent processes is a significant achievement; however, this

achievement needs to be enhanced by allowing the processes to communicate with each other.

Various methods have been proposed (and implemented) by others to facilitate process

communication, and several of them are described in [6]. Of these assorted methods, only one was

available in the existing Concurrent Pascal-S implementation, namely, communication via shared

variables. Since several processes can access the same variables, values can be deposited into the

variables by one process and picked up by another, thus achieving communication. However, this

 19

method immediately brings up the problem of mutual exclusion; that is, a situation where two or

more processes unknowingly access the same variable in such a way that the actions of one process

are subsequently overwritten by another. This problem can be solved by the use of semaphores to

protect access to shared variables. Semaphores, along with their corresponding functions wait and

signal, were already a part of the existing Ben-Ari implementation. Monitors (also summarized in

[6]) can also be used to solve the mutual exclusion problem. They are not explicitly defined in the

Concurrent Pascal-S kit, but they can be simulated by the user by the correct use of semaphores.

Refer to Appendix A for such a simulation, which was taken from Hoare's 1974 paper in

Communications of the ACM [9] and was translated into a Concurrent Pascal-S program by C.T.

Zahn.

 Neither of these methods allows direct process communication. Concurrent programmers

would surely benefit from some sort of "message passing" scheme, which is indeed the central idea

of Hoare's Communicating Sequential Processes (CSP) notation, as presented in [10] and [11]. This

programming model allows two processes to directly communicate with each other by issuing input

and output commands in the following fashion:

 PROCESS_NAME ? VAR

allows the issuing process to input (signified by the ? operator) a value from process

PROCESS_NAME and store it in the location VAR. Similarly,

 PROCESS_NAME ! EXPR

is a command whereby the value of EXPR is output (the ! operator) to process PROCESS_NAME

by the issuing process.

 Message passing can be of either the synchronous or the asynchronous variety. In the

 20

synchronous scheme, a process wishing to output (or input) a value must wait until another process

issues a corresponding input (or output) command. The point at which the two processes are

actually performing the exchange of information is called the rendezvous. After the rendezvous, the

two processes each go on their separate ways.

 In contrast, the asynchronous message passing scheme permits the process issuing the output

command to continue on its way immediately after the command is issued, whether or not a

corresponding input command has been issued; it does not have to wait for a rendezvous. The

process performing the input is still required to wait for a rendezvous, since it does not make much

sense for a process to issue and input command and then have nothing to show for it. If several

processes have output messages to a particular process that has not yet performed an input, those

messages are simply put on a queue for that input process and must be serviced one at a time.

 The synchronous paradigm also allows for process synchronization. This is due not only to

the aforementioned rendezvous scenario, but it is also possible for processes to exchange "empty" or

essentially meaningless messages whose sole intent is to synchronize the pair of processes. In other

words, the message allows the processes to reach a common point in time and then proceed anew.

 CSP also incorporates the concept of Dijkstra's guarded command [8]. A typical guarded

command is constructed in the following manner:

 if Guard1 → Command1
 � Guard2 → Command2
 .
 .
 .
 � Guardn → Commandn
 fi

The darkened bars separate the several guarded commands present in the construct. Each of the n

 21

guards is a Boolean expression, usually incorporating one of the communication primitives

discussed above. For some guard that evaluates to true, its corresponding command set is executed.

 For example, in the above set of guarded commands, if Guard2 evaluated to true, Command2 would

be performed. If more than one guard is true, then one of the corresponding command sets will be

chosen at random. In the case of all guards evaluating to false, the program will abort.

 Occam is a concurrent programming language that embodies the basic concepts of CSP (see

[12], [13], and [17], as well as [16] and [6] for discussions of Occam). A notable difference is that

the process communication is not signified by naming the process with which a rendezvous is

desired; rather, channels are established between processes as a means of conveying values, and they

are explicitly named as the vehicles through which communication is achieved. In the Concurrent

Pascal-S implementation, we have incorporated the ideas of CSP and Occam in order to provide a

synchronous message passing mechanism to allow the user to experience this concurrent

programming paradigm. A description of its syntax, semantics, and implementation follows.

Syntax and semantics

 Four new commands have been added to the Concurrent Pascal-S language to facilitate

synchronous message passing. The first of these is the getchannel command, which has the

following syntax:

 getchannel(chan)

A getchannel command is issued by a process with the effect of attaching a certain channel

exclusively to itself such that it can now receive messages from that channel. Processes must issue a

getchannel before they can attempt to receive from that channel, thereby establishing a many-to-one

 22

send-receive environment, as presented in [7] and [14].

 The input (?) and output (!) commands from the CSP discussion above have been

implemented as the second and third new Concurrent Pascal-S commands:

 send(expr, chan) ≈ chan ! expr
 receive(chan, var) ≈ chan ? var

A process may send an expression to any channel, even if that channel has not yet been attached to a

process. Multiple sends are put into a queue associated with their channel. Processes that send to a

channel must wait until a corresponding receive is issued on that channel; after the rendezvous, both

the sending and receiving processes proceed on their own.

 As stated above, a receive cannot be issued unless the issuing process already owns that

channel (has performed a getchannel). If it does own the channel, though, the first item on the send

queue is transferred to the location specified by var. As is the case with the send command, a

process issuing a receive must wait until the corresponding send command is issued.

 The fourth and final new command added to the Concurrent Pascal-S implementation is the

guarded command structure. The syntax is as follows:

 select
 B1 & C1 → commands
 #
 B2 & C2 → commands
 #
 .
 .
 .
 #
 Bn & Cn → commands
 end

The semantics of the Concurrent Pascal-S guarded command are the same as described above. Here,

 23

each B and C combination comprises a guard, where B is a Boolean expression and C is a

communication command (either send or receive). A guard need not contain both the Boolean and

communication components; only one of the two need be present. (The reader will note that a

guarded command structure with guards containing only Boolean expressions is essentially a non-

deterministic selection statement.)

Implementation

The channel table

 The scheme for implementing synchronous message passing is now presented. Since the

message passing is accomplished via channels, we need a data structure to store the key information

about the channels. An array of records called chantab was introduced for this purpose, to serve as

the channel table. The table is indexed by the same number that indexes its location in the identifier

table tab. Each channel entry contains the process ID number of its owner (i.e. the process that

performed a getchannel on that channel) in a field called owner, as well as a field called

uniqueowner that stores the unique process ID number of the owner process in case of a post-

mortem dump.

 The remaining fields of chantab are used to maintain the list of send requests on that

channel and the list of receive requests on that channel; the former list is called sendq, while the

latter list is called receiveq. Both of these lists are stored as FIFO queues, since the first

communication requests posted are the first to be serviced. They are composed of nodes of type

qptr, which will be discussed more thoroughly in a following section.

 The final field of chantab is sendcount, an integer variable used to keep track of the number

 24

of send requests that still require service. As with the type qptr mentioned above, the use of

sendcount will be explored later.

 At this point it would be appropriate to note that when the interpreter is first invoked, each

entry of the channel table has its owner and uniqueowner fields initialized to nilproc (a constant

equal to -1, showing that no process owns the channel), sendcount initialized to zero, and sendq and

receiveq initialized to nil.

The send and receive queues

 At first glance, it may seem fairly obvious how to go about storing send and receive requests

in their respective queues: every time a request is issued, simply create a new node containing the

proper information and append it to the end of the appropriate queue. But an additional challenge

presented itself in the inclusion of the guarded command into the language. The above method will

no longer suffice because of the following reason: select statement blocks may contain several

guards, which in turn may contain several communication requests. To aid in ease of compilation,

these requests all need to be posted as they are encountered by the interpreter (assuming that the

Boolean portion of the guard, if present, is true). But as program execution proceeds, only one of

those communication requests will be processed, and the others will be cancelled. So a way is

needed to post all the requests found within a guarded command, and yet be able to go back and

cancel those that will never be serviced.

 25

 The solution to this problem involves the inclusion of the set of all send and receive requests

of a particular guarded command block in a circular linked list. This is not a separate list, but rather

it is incorporated into the sendq's and receiveq's of the channels involved. An illustration is shown

in Figure 8. In this example, there are three channels, each represented by a darkly-outlined box.

Each channel is named and has a sendq pointer, represented by the higher of the two circles in the

box, and a receiveq pointer, represented by the lower circle. Messages that have been posted are

portrayed as smaller, lightly-outlined boxes, reflecting the qentry data structure in the kit (qptr has

been established as a pointer to a node of type qentry; therefore sendq and receiveq are of type

Figure 8: Synchronous message passing scheme

 26

qptr). Each qentry node has seven important fields; the first is the process field, reflecting the

process ID number of the process that issued the communication request. Second is the channel

field, which tells to which channel that particular request was issued. In Figure 8, this number is

shown in the upper right-hand corner of each message node. It is needed because when we are

traveling around the circular linked list, we need to be able to refer back to the proper channel, since

the list does not have backward pointers.

 The third field in the qentry node is called direction; it tells whether a node is a send

request or a receive request. Next comes the comm field, which in the case of a send request

contains the expression that was sent, and in the case of a receive request contains the address of the

variable where the message is to be stored. The resume field tells where program execution is to

resume should this node be serviced.

 The final two fields of the qentry data structure are both pointers of type qptr. The first is

called next and simply points to the next entry in either the sendq or the receiveq for that channel,

and pointing to nil at the end of the list. In the figure, this pointer is represented by the upper circle

in each node. The other pointer, illustrated by the lower circle in each node, is named setlink, and it

is used to link together, in a circular linked list, the set of all nodes that were posted as the result of a

guarded command block. In the case of individual send and receive requests that were issued

independent of a guarded command, this pointer simply points to its own node, reflecting a singleton

set. So in Figure 8 we see an example where each channel has been issued a combination of

singleton requests as well as requests resulting from a guarded command block. In this particular

example, it is evident that two guarded command blocks have been encountered since there are two

separate circular linked lists. The exact process that is used to populate and maintain these lists will

 27

be explored later in the detailed explanation of the code.

New variables

 To accommodate the inclusion of the guarded command structure, it was necessary to

introduce two new variables to the interpret procedure. The first of these is selcount, an integer

that reflects the number of communication requests that were posted as the result of a guarded

command block. This number is not simply equal to the number of requests present in the actual

text of the block, but shows how many Boolean portions of the guards evaluated to true, thereby

resulting in the posting of their corresponding communication requests. In the case of normal send

and receive statements, selcount has the value of 1.

 The second variable that was added is setptr, a pointer of type qptr that points to that

process' circular set of communication requests. After the circular linked list has been constructed,

setptr is pointed at one of the nodes to provide immediate access to the list.

The Getchannel instruction

 Three new P-code instructions were added to the Concurrent Pascal-S kit to accommodate

the synchronous message passing scheme. These are the instructions that are emitted by the parser

and then passed on to the interpreter. The first of them is the Getchannel instruction, which has been

given instruction number 42. This instruction simply accesses the owner and uniqueowner fields

of the proper chantab entry and assigns to them the process ID number of the running process

(runpr) and that process' unique ID number (procno field of ptab), respectively.

 28

The Post instruction

 Instruction number 41 is the Post instruction, and as evidenced by its name, it is used to post

communication requests, both inside and outside of guarded command blocks. The Post instruction

is the third instruction of the three-instruction set that comprises both the send and receive

commands. The first two instructions of this set cause the channel identifier and expression/variable

address to be loaded onto the stack. Post then pushes three more values on top of these two: the

process issuing the request, the resume address, and an integer identifying the request as either send

or receive. These five values will be used by the Comm instruction (below).

The Comm instruction

 The purpose of the Comm instruction (number 40) is to go through the set of communication

requests that have been posted and select one for execution if a rendezvous is possible; otherwise,

the process must cease execution temporarily and wait for a rendezvous. It works in the following

manner:

 First, Comm checks to see if a valid request has been made, and issues an error if this is not

the case. Otherwise, it proceeds to enqueue each request in turn onto the appropriate queue of the

appropriate channel, incrementing its local variable selcount for each node that is constructed.

Since the channel identifier and the expression/variable address are pushed onto the stack in opposite

order for send and receive requests, it is the responsibility of Comm to put them all in the same

order before it enqueues the request. This ensures the uniformity of the code for the EnQueue

procedure. It is this procedure, along with its local procedure FillNode, that actually searches along

the sendq or receiveq of the proper channel, appends a new node, and fills that node with the

 29

required information. In addition, FillNode sets the values of the setlink and setptr pointers to

construct the circular linked list request set. EnQueue also does a bit of maintenance work, as it

deletes those nodes on the sendq that have a channel value of -1; these nodes were posted as a result

of a previous select block, and they were "cancelled" to show that they were no longer eligible for

servicing.

 After all requests have been enqueued, Comm picks a random number greater than or equal

to zero and less than selcount and advances setptr that many times around the circular linked list.

This is done in order to provide a way of nondeterministically selecting a communication request

from the current guarded command set to be serviced. (Note: This procedure works for regular

send and receive requests also, since in their cases selcount is equal to one; therefore, the random

number chosen is always zero and setptr is not advanced.) Comm then starts at the node at which

setptr is now pointing and goes around the entire set of requests one by one. At each stop, Comm

examines the channel on which that node has been issued to see if it is ready for a rendezvous (if

sendcount <> 0 and receiveq <> nil). If it is indeed ready for a rendezvous, then procedure

Rendezvous is called. This procedure does the actual exchange of information through the channel

between the two processes, wakes up the processes that had been put to sleep waiting for the

rendezvous, and adjusts their tblocked and totalwait fields to reflect the time spent waiting. The

final act of Rendezvous is to call the procedure CancelNodes, which goes through the request set

associated with both the sending process and the receiving process. For each node encountered, if it

is a send node, its channel field is set to -1 (the request is "cancelled") and the sendcount of that

channel is decreased by one; if it is a receive node, that node is deleted and the receiveq pointer of

its channel is set to nil. The reason for this difference in activity is that receiveq's can only contain

 30

one node in this implementation, so they can easily be deleted immediately. Sendq's, though, can be

many nodes long, so it will suffice to simply mark them as cancelled now and do the actual deletion

later.

 Returning to the Comm instruction itself, it will continue to go around the set of enqueued

requests, searching for one that is ready for a rendezvous. If the search is exhausted and no

rendezvous has been performed, then that process must wait for a corresponding communication

request to be issued. At this point the procedure WaitforRen ("Wait for Rendezvous") is called.

This procedure removes the current process from the ready queue and sets its status field to reflect

the cause of the waiting (i.e. whether blocked on a send, receive, or select statement). It also fills in

the blocker field with the identifier of the channel on which the request has been issued.

 That is the end of the Comm instruction. It is called once for every regular send or receive

request, and once for every set of requests encountered in a select block. The kit can immediately

tell whether a Comm instruction is to be used for a singleton request or a select block by examining

the y argument of the Comm instruction. This field has the value 1 (represented by the constant

single) if it is a single communication request, or it has the value 0 (denoted by the constant select) if

it is used for a select block.

Entering the select statement block

 Before the various components of the select statement block are processed, the parser emits

an instruction 24 (push literal) code with the argument select (0). This zero value is pushed onto the

stack to act as a sentinel value to the Comm instruction; that is, Comm will continue to pop 5-tuples

of communication request information until it reaches the sentinel value (0).

 31

Parser modifications

 Another facet of the modifications necessary to implement synchronous message passing is

the changes made in the code for the Concurrent Pascal-S parser. The parsing of the getchannel,

send, and receive commands is fairly straightforward as it basically follows the style already used to

parse the wait and signal commands. An important thing to note, however, is the use of the variable

parseguard, which is set to true when the parser is in the middle of going through a guarded

command block. The code for send and receive will only emit a Comm instruction (40) if

parseguard is false; otherwise, it is up to the parse code for the select statement to emit the Comm

instruction. Also, it should be noted that the Post instruction (41) is emitted with one argument:

either that of the constant send (1) or the constant receive (2).

 The parsing of the select statement can be derived from the following EBNF grammar:

 selcom = 'select' guardcomm { '#' guardcomm } 'end' .

 guardcomm = guard '->' commands .

 guard = boolean ['&' communication] | communication .

 communication = 'send(' expr ',' channel ')'
 | 'receive(' channel ',' var addr ')' .

The selcom portion above was actually called selectstatement in the program to conform to the

nomenclature of other procedures such as ifstatement and whilestatement. The first action

performed by selectstatement is to emit instruction 65 (Enter Select), and its last action is to emit

instruction 66 (Exit Select). In between it repeatedly calls procedure guardcomm to process all of

the guards in the block; guardcomm in turn calls procedure guard to process the actual guard. A

 32

key responsibility of all three of these procedures working together is to keep track of return

addresses that must be inserted into previously-generated code to enable the interpreter to jump

around sections of code when necessary (eg. when the Boolean portion of a guard is false, or after

parsing the code for a communication request).

 For the sake of completeness, we note that the words channel, getchannel, send, and

receive were all entered into the identifier table tab. Also, the keyword select was added to key, the

table of keywords, and its corresponding symbol selectsy was added to ksy, the table of keyword

symbols. Two additions were made to the special symbols table sps as well: sps['#'] was set to

pound, and sps['&'] was set to ampersand.

ADDITIONAL FEATURES

Post-mortem dump

 Every programmer realizes the importance of a good post-mortem dump. When his or her

program aborts because of some kind of error, it is always helpful to see information concerning the

state of the system at the time of the abort. The existing Concurrent Pascal-S kit did perform a dump

of this nature, but it has now been further enhanced as well as given its own procedure,

PostMortemDump. Like before, it still issues the same initial message:

 Halt at xx in process yy because of zz

where xx represents the value of pc at the time of the halt, yy is the process ID number that was

currently executing, and zz is a specific message displaying the cause of the abort. Two such

messages were added to the implementation to reflect errors associated with channels and guarded

commands. The first message is illegal channel access, and its associated ps status is chanchk.

 33

This message is shown when a process tries to send a message to itself or receive a message from a

channel owned by another process. The second new message is false guards in select statement and

its associated ps status guardchk. This warning is displayed if none of the Boolean portions of the

guards of a guarded command block are true. The user must construct his or her program in such a

way that at least one Boolean guard evaluates to true.

 PostMortemDump then displays a table showing, for each active process, the status of that

process, what semaphore or channel that process may be blocked on (or it may be asleep), the value

of the Program Counter, how long that process has been running, and how long that process has

been waiting as a result of wait commands, waiting for a rendezvous, or sleeping.

 Finally, another table is shown, containing information about the user's program's global

variables. Their name, type, offset, and current value are displayed, as well as a comment about

their present state. For example, semaphores tell whether or not they are blocking any particular

process, and channels tell what process they are owned by (if any), whether or not a receive request

is still pending, and what send requests may be still pending. See Figure 9 for a sample post-

mortem dump produced from an actual Concurrent Pascal-S program.

 34

System date and time

 Another convenience provided for the user is the procedure DateAndTime, which is

immediately invoked at the start of each Concurrent Pascal-S session. As its name implies, it simply

prints the current date and time at the top of the output produced by the kit. This greatly aids the

user in sorting and maintaining his or her output records, whether on disk file or hard copy. As for

the code of this procedure, the Turbo Pascal procedures GetDate and GetTime were invoked to

Halt at 26 in process 5 because of illegal channel access

 Process Status Blocker PC Run Wait

 0) sleep sleep 92 38 6

 1) send ch 7 4 6 18

 2) wait sem 16 7 4 16

 3) receive ch 10 14 8 8

 4) send ch 7 19 6 6

 5) HALT 26 8 0

Global Variables:
NAME TYPE OFFSET VALUE COMMENT
---- ---- ------ ----- -------
FBsema special 5 5 Free process blocks still available
chan channel 7 Owner = process 5
 No receives are pending
 Sent messages pending:
 24 from process 1
 5 from process 4
chan2 channel 10 Owner = process 3
 Receives are pending
 No sent messages are pending
i integer 13 1
b boolean 14 TRUE
c character 15 A
s semaphore 16 0 Blocking process 2

Figure 9: Sample post-mortem dump

 35

obtain the current system date and time. The results from these procedures were stored in local

variables and presented in the most readable way to the user.

User options

 At the start of each Concurrent Pascal-S session, the user is allowed to customize the output

he or she will receive from the kit. He or she can choose whether or not to include the following

information in the output: a listing of the machine code, a trace of the execution, and the contents of

sumtab and a list of the wait and resumption times of each process. The Boolean variables used to

control these actions are CODELIST, TRACE, and ShowInternal. The user's fourth option is

whether or not to limit the runtime execution graph to two pages (this is the "adaptive mode"

discussed previously). This can be quite a useful feature since the graph for programs of sufficient

complexity can sometimes go on for pages. If the user chooses this option, the variable Adaptive is

set to true and processor activity is shown only at given intervals, such that the output does not

exceed two pages (132 lines). See Figure 10 for a display of the actual questions and a set of

answers that were supplied by the user.

PEDAGOGY

------- CONCURRENT PASCAL-S BY BEN-ARI -------- 2/21/1992 -- 3:47:08 pm ----

Do you want to see the MACHINE CODE generated for this program? y
Do you want to see a TRACE of the execution of this program? n
Do you want to see EXTRA INTERNAL INFORMATION to aid in debugging? n
Do you want to limit the RUNTIME EXECUTION GRAPH to 2 pages? y

Figure 10: Sample user session

 36

 We would like to stress the importance of this programming kit in the world of academics.

As stated at the outset, many students are not afforded the opportunity to program in a true

concurrent environment. The Concurrent Pascal-S kit enables students to practice and get a better

feel for the concurrent programming techniques they have learned in the classroom. Specifically,

this kit allows the use of semaphores and synchronous message passing; monitors may also be

implemented, requiring the use of semaphores and an extra bit of programming by the user (see

Appendix A).

 These three paradigms are the most popular and therefore the most widely known methods

of problem solving using concurrent programming. They can be used to solve some of the key

problems that are very frequently faced in the world of concurrent programming. The bounded

buffer is one of these problems.

 The bounded buffer problem is also referred to as the producer-consumer problem. In this

problem, as the latter name implies, there is a producer process that is continually calculating values

and sending them out to a consumer process, which continually takes in the values. In between the

two processes is a depository for these values which is called a bounded buffer. This buffer is

usually implemented as an array where values can be deposited as well as withdrawn, and the

number of elements inside the array grows and shrinks as the producer and consumer go about their

duties. The producer can put values into the rear of the buffer as long as there is a slot open, and the

consumer can remove values from the front of the buffer whenever there is one present. The

question is how to coordinate the two processes so that each can spend as much time as possible

doing actual work and as little time as possible waiting to send or receive values. Good discussions

of the bounded buffer problem can be found in chapter four of [2] and chapter four of [16].

 37

 One solution to this problem is achieved by the use of semaphores, where one semaphore is

used to prevent the producer from depositing values into a full buffer and another semaphore is used

to prevent the consumer from removing values from an empty buffer. A Concurrent Pascal-S

program using this method is shown in Appendix B.

 A second solution uses the synchronous message passing scheme, and is presented in

Appendix C. Here, in addition to the usual producer and consumer processes, there is a third process

(in this case named Copy) established to manage the bounded buffer. Using channels and a guarded

command, Copy is able to input values from the producer as long as there is space available in the

buffer and the producer has a value ready for output. Similarly, Copy also removes values from the

buffer and sends them to the consumer as long as the buffer is nonempty and the consumer is ready

for input.

 Another problem that is familiar amongst concurrent programmers is the readers and writers

problem. This problem involves two kinds of processes: readers and writers. These processes all

share access to the same database. The readers merely wish to obtain information from the database;

this is a non-destructive action, so many readers may concurrently access the database. The writers,

though, wish to read information from the database and update it as well, thereby requiring exclusive

access to the database to prevent interference with other readers and writers.

 The first solution to the problem uses semaphores, and is shown in chapter four of [2]. Both

readers and writers contain critical sections, which are blocks of code that cannot be interrupted

during execution by other processes because they use shared resources. One semaphore in this

solution is used to protect the critical section between readers, while a second semaphore protects

the critical section between readers and writers.

 38

 Another solution to the readers and writers problem uses monitors and can be found listed in

Appendix A. As previously mentioned, this algorithm was taken from [9] and coded by C.T. Zahn

to demonstrate the implementation of monitors in Concurrent Pascal-S. Basically, it uses the

example of a banking situation to more concretely embody the actions of readers and writers.

Semaphores are then used in the simulation of monitors to provide exclusive access to the database

(a bank account, in this case) when necessary.

 Yet another concurrent programming paradigm that is continuing to grow in popularity is the

method of dataflow programming. Good overviews of this topic are presented in [16] and [5].

Briefly, dataflow programming looks at the whole concept of programming from a different angle:

instead of having the program statements and their textual order in the program determine the

sequence of execution, why not let as many statements as possible be performed in parallel as soon

as the data are ready for the operation? In other words, the data are allowed to "flow" into their

operators with results "flowing" out into other operators; it can immediately be seen that

dependencies among data need to be identified. As a small example, consider the matrix

multiplication program in Appendix D whose algorithm was taken from [16]. Through the use of

parallel execution blocks, it can be seen how the two multiplications of the inner product procedure

need to be calculated before the addition operation can take place; the data flow from the

multiplication to the addition. Also, all four inner products can be calculated at the same time since

the result of one does not affect the operation of any other. To contrast this method of matrix

multiplication, another solution is given in Appendix E using a message passing approach. This

program was originally an Occam program presented in [16] but has been translated to Concurrent

Pascal-S.

 39

CONCLUSION

 The desire for greater speed in problem-solving is the primary driving force behind

concurrent programming research. The Concurrent Pascal-S kit does its best to simulate real-time

concurrency. The timing and statistics features added to the implementation are helpful for

debugging and efficiency checks, and they give the user a feel for how the program would work on a

true concurrent machine. Of course, the same speed is not achieved, but that is not the aim of this

exercise (nor is it possible!). Therefore, the Concurrent Pascal-S programmer should always keep in

mind the fact that the performance of his or her programs should be measured not by how long the

PC spends executing the program, but rather by observing the statistics that are now provided at the

end of the run.

 We wholeheartedly recommend the use of this kit and others like it to better familiarize

students with the principles and practice of concurrent programming!

 40

 Appendix A

 CPS Program to Implement Monitors
 As Suggested by C.A.R. Hoare [9]
 And Coded by C.T. Zahn

program rwmon2; (* rwmon2.in *)

 (* This is a simplified implementation of
 * our RWMon program as suggested by Hoare on
 * page 551 of his CACM article. It assumes that
 * all signal operations occur as the last command
 * in a monitor procedure, and therefore the
 * urgency variables can be omitted.
 *)

 const trace = true;
 firstbal = 100; maxchng = 10;
 var mutex : semaphore;
 readcnt : integer; (* actually reading *)
 readsem, writesem : semaphore;
 okrcnt, okwcnt : integer; (* waiting to access *)
 busy : boolean; (* someone writing *)
 balance, transcnt, (* bank account *)
 actors : integer; (* live updaters *)
 printsem : semaphore; (* output mutex *)

 function abs(x : integer) : integer;
 begin
 if x<0 then abs := -x else abs := x
 end;

 procedure initialize;
 var j, k : integer;
 begin
 mutex := 1; readcnt := 0;
 busy := false;
 readsem := 0; writesem := 0;
 okrcnt := 0; okwcnt := 0;
 end; (* initialize *)

 procedure startread;
 begin
 wait(mutex);
 if busy or (okwcnt > 0) then
 begin
 okrcnt := okrcnt+1;
 signal(mutex);
 wait(readsem);

 41

 okrcnt := okrcnt-1
 end;
 readcnt := readcnt+1;
 if okrcnt > 0 then signal(readsem)
 else signal(mutex)
 end; (* startread *)

 procedure endread;
 begin
 wait(mutex);
 readcnt := readcnt-1;
 if (readcnt = 0) and (okwcnt > 0) then
 signal(writesem)
 else signal(mutex)
 end; (* endread *)

 procedure startwrite;
 begin
 wait(mutex);
 if (readcnt <> 0) or busy then
 begin
 okwcnt := okwcnt+1;
 signal(mutex);
 wait(writesem);
 okwcnt := okwcnt-1
 end;
 busy := true;
 signal(mutex)
 end; (* startwrite *)

 procedure endwrite;
 begin
 wait(mutex);
 busy := false;
 if okrcnt > 0 then signal(readsem)
 else if okwcnt > 0 then signal(writesem)
 else signal(mutex)
 end; (* endwrite *)

 procedure debit;
 const reps = 10;
 var k, db : integer;
 begin
 for k := 1 to reps do
 begin
 db := 17*k mod maxchng;
 startwrite;
 balance := balance-db; transcnt := transcnt+1;
 if trace then
 begin

 42

 wait(printsem);
 writeln('debit ', k, db, balance, transcnt);
 signal(printsem)
 end;
 endwrite
 end;
 actors := actors-1;
 writeln('exit from debit ****** ')
 end; (* debit *)

 procedure credit;
 const reps = 15;
 var k, cr : integer;
 begin
 for k := 1 to reps do
 begin
 cr := 53*k mod maxchng;
 startwrite;
 balance := balance+cr; transcnt := transcnt+1;
 if trace then
 begin
 wait(printsem);
 writeln('credit ', k, cr, balance, transcnt);
 signal(printsem)
 end;
 endwrite
 end;
 actors := actors-1;
 writeln('exit from credit ******** ')
 end; (* credit *)

 procedure audit(n : integer);
 var lastbal, lastcnt, newbal, newcnt, k : integer;
 begin
 newbal := firstbal; newcnt := 0;
 repeat
 lastbal := newbal; lastcnt := newcnt;
 for k := 1 to 200 do (* delay a bit *) ;
 startread;
 newbal := balance; newcnt := transcnt;
 endread;
 if trace then
 begin
 wait(printsem);
 writeln('audit ', n, lastbal, lastcnt);
 signal(printsem)
 end;
 if abs(newbal-lastbal) > (newcnt-lastcnt)*maxchng then
 writeln('***** ??? bad balance found by audit.')
 until actors = 0;

 43

 wait(printsem);
 writeln('exit from audit ', n, ' *******');
 signal(printsem)
 end; (* audit *)

begin (* rwmon *)
 initialize; balance := firstbal; transcnt := 0; actors := 2;
 printsem := 1;
 cobegin
 credit
 | debit
 | audit(1)
 | audit(2)
 | audit(3)
 coend;
 writeln; writeln('All done!')
end.

 44

 Appendix B

 Bounded Buffer Solution Using Semaphores
 As Coded by C.T. Zahn

program boundedbuffer;
 const bufsize = 3; nitems = 10;
 FastP = true; (* makes producer fast *)
 var q : array[1..bufsize] of integer;
 front, rear, count : integer;
 mutex, filled, empty : semaphore;

 procedure initializeq;
 begin
 count := 0; front := 1; rear := 0
 end; (* initializeq *)

 procedure addtoq(x : integer);
 begin
 count := count+1;
 rear := (rear mod bufsize) + 1;
 q[rear] := x
 end; (* addtoq *)

 procedure deletefromq(var x : integer);
 begin
 count := count - 1;
 x := q[front];
 front := (front mod bufsize) + 1
 end; (* deletefromq *)

 procedure produce;
 var item : integer; t : integer;
 begin
 for item := 1 to nitems do
 begin
 if not FastP then
 for t := 1 to 20 do
 (* nothing *) ;
 wait(empty);
 wait(mutex);
 addtoq(item);
 writeln(item, ' from P');
 signal(mutex);
 signal(filled)
 end;
 writeln('exit P')
 end; (* produce *)

 45

 procedure consume;
 var item, last, t : integer;
 begin
 last := 0;
 repeat
 wait(filled);
 wait(mutex);
 deletefromq(item);
 writeln(item, ' from C');
 signal(mutex);
 signal(empty);
 if FastP then
 for t := 1 to 20 do
 (* nothing *) ;
 if item = last+1 then
 last := item
 else
 begin
 writeln('Bad Q');
 abort
 end
 until item = nitems;
 writeln('exit C')
 end; (* consume *)

begin (* MAIN code *)
 mutex := 1; (* noone in critical section yet *)
 filled := 0; empty := bufsize; (* buffer is empty *)
 initializeq;
 cobegin
 produce
 |
 consume
 coend;
 writeln(' Both Finished ')
end. (* bounded buffer *)

 46

 Appendix C

 Bounded Buffer Solution Using Message Passing
 As Suggested by G. Andrews [2]
 And Coded by M. Camillone

program buff; (* bounded buffer from Andrews text, p. 428 *)

var East, West : channel;

procedure Producer;
var x : integer;
begin
 while true do
 for x := 1 to 100 do
 send(x, West)
end; (* Producer *)

procedure Consumer;
var y : integer;
begin
 getchannel(East);
 while true do
 begin
 receive(East, y);
 writeln(y)
 end
end; (* Consumer *)

procedure Copy;
var buffer : array[1..10] of integer;
 front, rear, count : integer;
begin
 front := 1;
 rear := 1;
 count := 0;
 getchannel(West);
 while true do
 select
 count > 0 & send(buffer[front], East) ->
 begin
 count := count - 1;
 front := (front mod 10) + 1
 end
 # count < 10 & receive(West, buffer[rear]) ->
 begin
 count := count + 1;
 rear := (rear mod 10) + 1
 end

 47

 end
end; (* Copy *)

begin
 cobegin
 Producer
 | Consumer
 | Copy
 coend
end.

 48

 Appendix D

 Matrix Multiplication Solution Using Dataflow
 As Suggested by R.H. Perrott [16]
 And Coded by M. Camillone

program matflow;

(* Dataflow matrix multiplication *)
(* See Perrott, p. 244 *)

const N = 2;

type sglary = array[1..N] of integer;
 dblary = array[1..N] of sglary;

var Mat1, Mat2, Ans : dblary;

procedure PrintMatrix(M:dblary; inv:boolean);
var i, j : integer;
begin
 for i := 1 to N do
 begin
 write('|');
 for j := 1 to N do
 if inv then write(M[j,i])
 else write(M[i,j]);
 writeln(' |')
 end
end;

function InnerP(X,Y:sglary) : integer;
var Z : sglary;
begin
 cobegin
 Z[1] := X[1] * Y[1]
 | Z[2] := X[2] * Y[2]
 coend;
 InnerP := Z[1] + Z[2]
end;

procedure MatrixMult(A,B:dblary; var C:dblary);
begin
 cobegin
 C[1,1] := InnerP(A[1],B[1])
 | C[1,2] := InnerP(A[1],B[2])
 | C[2,1] := InnerP(A[2],B[1])
 | C[2,2] := InnerP(A[2],B[2])
 coend

 49

end;

begin (* main *)
 Mat1[1,1] := 1; Mat1[1,2] := 2;
 Mat1[2,1] := 3; Mat1[2,2] := 4;
 Mat2[1,1] := 5; Mat2[1,2] := 7;
 Mat2[2,1] := 6; Mat2[2,2] := 8;

 MatrixMult(Mat1,Mat2,Ans);

 PrintMatrix(Mat1,false);
 writeln(' *');
 PrintMatrix(Mat2,true);
 writeln(' =');
 PrintMatrix(Ans,false)
end.

 50

 Appendix E

 Matrix Multiplication Solution Using Message Passing
 As Suggested by R.H. Perrott [16]
 And Coded by M. Camillone

program matmult;

(* Concurrent matrix multiplication program *)
(* From "Parallel Programming," R.H. Perrott, p. 127 *)

const n = 2;

var column, row : array[0..5] of channel;

procedure mult(top,bottom,right,left:integer);
var a,b,t,i : integer;
begin
 t := 0;
 for i := 1 to n do
 begin
 cobegin
 getchannel(column[top]); receive(column[top], a)
 | getchannel(row[left]); receive(row[left], b)
 coend;
 t := t + (a * b);
 cobegin
 send(a, column[bottom]);
 | send(b, row[right])
 coend
 end;
 writeln(t)
end; (* mult *)

procedure initmatrix;
begin
 cobegin
 send(2, row[0])
 | send(7, column[0])
 | send(4, row[1])
 | send(8, column[1])
 coend;
 cobegin
 send(1, row[0])
 | send(5, column[0])
 | send(3, row[1])
 | send(6, column[1])
 coend
end; (* initmatrix *)

 51

procedure cleanup;
var a,b,c,d,e : integer;
begin
 for e := 1 to n do
 cobegin
 getchannel(row[4]); receive(row[4], a);
 | getchannel(row[5]); receive(row[5], b);
 | getchannel(column[4]); receive(column[4], c);
 | getchannel(column[5]); receive(column[5], d);
 coend;
end; (* cleanup *)

begin (* main *)
 cobegin
 initmatrix
 | mult(0,2,2,0)
 | mult(1,3,4,2)
 | mult(2,4,3,1)
 | mult(3,5,5,3)
 | cleanup
 coend
end. (* main *)

 52

 Appendix F

 Complete Concurrent Pascal-S Session

------- CONCURRENT PASCAL-S BY BEN-ARI -------- 3/9/1992 -- 9:35:08pm ----
USER PROGRAM:
 0 program pipeline;
 0
 0 (* Calculate nCr in pipeline fashion using channels *)
 0
 0 var pipe : array[1..7] of channel;
 0 last : integer;
 0
 0 procedure timer;
 0 var t : integer;
 0 begin
 0 for t := 1 to last do
 4 send(t, pipe[1]);
 12 send(-1, pipe[1])
 20 end;
 20
 20 procedure choose(left, right : integer);
 21 var ncr, x : integer;
 21 begin
 21 getchannel(pipe[left]);
 25 ncr := 0;
 28 repeat
 28 receive(pipe[left], x);
 35 if x >= 0 then
 39 begin
 39 ncr := ncr + x;
 44 send(ncr, pipe[right])
 51 end
 51 until x < 0;
 55 send(-1, pipe[right])
 63 end;
 63
 63 procedure results;
 64 var t, x : integer;
 64 begin
 64 getchannel(pipe[7]);
 68 for t := 1 to last+1 do
 74 begin
 74 receive(pipe[7], x);
 81 writeln(x)
 83 end
 84 end;
 85
 85 begin (* main *)
 86 writeln('** Welcome to the n C 7 Calculator **');
 89 writeln;
 90 write('Please enter a value for n : ');
 92 readln(last);
 95 writeln;
 96 writeln('Solution for', last, ' C 7 :');
 103 last := last - 6;
 108 cobegin
 108 timer
 112 | choose(1,2)

 53

 122 | choose(2,3)
 131 | choose(3,4)
 140 | choose(4,5)
 149 | choose(5,6)
 158 | choose(6,7)
 167 | results
 173 coend
 176 end.

Global Variables:
 FBsema OFFSET: 5
 pipe OFFSET: 7
 last OFFSET: 28

CODE:
 0) 0 2 5
 1) 24 0 1
 2) 1 1 28
 3) 14 0 12
 4) 24 0 0
 5) 1 2 5
 6) 24 0 22
 7) 24 0 1
 8) 21 0 1
 9) 41 0 1
 10) 40 0 1
 11) 15 0 4
 12) 24 0 0
 13) 24 0 1
 14) 36 0 0
 15) 24 0 22
 16) 24 0 1
 17) 21 0 1
 18) 41 0 1
 19) 40 0 1
 20) 32 0 0
 21) 24 0 22
 22) 1 2 5
 23) 21 0 1
 24) 42 0 0
 25) 0 2 7
 26) 24 0 0
 27) 38 0 0
 28) 24 0 0
 29) 24 0 22
 30) 1 2 5
 31) 21 0 1
 32) 0 2 8
 33) 41 0 2
 34) 40 0 1
 35) 1 2 8
 36) 24 0 0
 37) 50 0 0
 38) 11 0 51
 39) 0 2 7
 40) 1 2 7
 41) 1 2 8

 54

 42) 52 0 0
 43) 38 0 0
 44) 24 0 0
 45) 1 2 7
 46) 24 0 22
 47) 1 2 6
 48) 21 0 1
 49) 41 0 1
 50) 40 0 1
 51) 1 2 8
 52) 24 0 0
 53) 47 0 0
 54) 11 0 28
 55) 24 0 0
 56) 24 0 1
 57) 36 0 0
 58) 24 0 22
 59) 1 2 6
 60) 21 0 1
 61) 41 0 1
 62) 40 0 1
 63) 32 0 0
 64) 24 0 22
 65) 24 0 7
 66) 21 0 1
 67) 42 0 0
 68) 0 2 5
 69) 24 0 1
 70) 1 1 28
 71) 24 0 1
 72) 52 0 0
 73) 14 0 85
 74) 24 0 0
 75) 24 0 22
 76) 24 0 7
 77) 21 0 1
 78) 0 2 6
 79) 41 0 2
 80) 40 0 1
 81) 1 2 6
 82) 29 0 1
 83) 63 0 0
 84) 15 0 74
 85) 32 0 0
 86) 24 0 37
 87) 28 0 0
 88) 63 0 0
 89) 63 0 0
 90) 24 0 29
 91) 28 0 37
 92) 0 1 28
 93) 27 0 1
 94) 62 0 0
 95) 63 0 0
 96) 24 0 12
 97) 28 0 66
 98) 1 1 28
 99) 29 0 1
 100) 24 0 6
 101) 28 0 78

 55

 102) 63 0 0
 103) 0 1 28
 104) 1 1 28
 105) 24 0 6
 106) 53 0 0
 107) 38 0 0
 108) 0 1 5
 109) 6 0 0
 110) 4 0 1
 111) 10 0 115
 112) 18 0 24
 113) 19 0 4
 114) 5 0 0
 115) 0 1 5
 116) 6 0 0
 117) 4 0 1
 118) 10 0 124
 119) 18 0 26
 120) 24 0 1
 121) 24 0 2
 122) 19 0 6
 123) 5 0 0
 124) 0 1 5
 125) 6 0 0
 126) 4 0 1
 127) 10 0 133
 128) 18 0 26
 129) 24 0 2
 130) 24 0 3
 131) 19 0 6
 132) 5 0 0
 133) 0 1 5
 134) 6 0 0
 135) 4 0 1
 136) 10 0 142
 137) 18 0 26
 138) 24 0 3
 139) 24 0 4
 140) 19 0 6
 141) 5 0 0
 142) 0 1 5
 143) 6 0 0
 144) 4 0 1
 145) 10 0 151
 146) 18 0 26
 147) 24 0 4
 148) 24 0 5
 149) 19 0 6
 150) 5 0 0
 151) 0 1 5
 152) 6 0 0
 153) 4 0 1
 154) 10 0 160
 155) 18 0 26
 156) 24 0 5
 157) 24 0 6
 158) 19 0 6
 159) 5 0 0
 160) 0 1 5
 161) 6 0 0

 56

 162) 4 0 1
 163) 10 0 169
 164) 18 0 26
 165) 24 0 6
 166) 24 0 7
 167) 19 0 6
 168) 5 0 0
 169) 0 1 5
 170) 6 0 0
 171) 4 0 1
 172) 10 0 176
 173) 18 0 31
 174) 19 0 4
 175) 5 0 0
 176) 9 0 0
 177) 31 0 0

------------- INTERPRET
** Welcome to the n C 7 Calculator **

Please enter a value for n : 17
Solution for 17 C 7 :
 1
 8
 36
 120
 330
 792
 1716
 3432
 6435
 11440
 19448
 -1

RUNTIME SUMMARY:

Process# /
Processor used Start Run time Time waiting Finish Elapsed time
 0 / 0 0 56 391 447 447
 1 / 1 25 104 217 346 321
 2 / 2 29 333 0 362 333
 3 / 3 33 333 12 378 345
 4 / 4 37 333 24 394 357
 5 / 5 41 333 36 410 369
 6 / 6 45 333 48 426 381
 7 / 7 49 333 60 442 393
 8 / 8 53 146 247 446 393
-------------- ---- ---- ----
TOTALS: 2304 1035 3339

RELATIVE UTILIZATION PERCENTAGES (across processes):

Process# Run/ Run+Wait = Utilization
 0 56/ 56+ 391 = 12.5%
 1 104/ 104+ 217 = 32.4%
 2 333/ 333+ 0 = 100.0%

 57

 3 333/ 333+ 12 = 96.5%
 4 333/ 333+ 24 = 93.3%
 5 333/ 333+ 36 = 90.2%
 6 333/ 333+ 48 = 87.4%
 7 333/ 333+ 60 = 84.7%
 8 146/ 146+ 247 = 37.2%
-------- -------------- ------
TOTALS: 2304/2304+1035 = 69.0%

GRANULARITY of this application =
ratio of concurrency overhead to actual work being performed =
40 / 2304 = 1.7%
(High percentage = Fine-grained; Low percentage = Coarse-grained)

ABSOLUTE UTILIZATION PERCENTAGES & GRAPHS (across processors):

Processor Run+Wait/ Run+Wait+Idle = Utilization
 0 56+ 391/ 56+ 391+ 0 = 100.0%
 1 104+ 217/ 104+ 217+ 126 = 71.8%
 2 333+ 0/ 333+ 0+ 114 = 74.5%
 3 333+ 12/ 333+ 12+ 102 = 77.2%
 4 333+ 24/ 333+ 24+ 90 = 79.9%
 5 333+ 36/ 333+ 36+ 78 = 82.6%
 6 333+ 48/ 333+ 48+ 66 = 85.2%
 7 333+ 60/ 333+ 60+ 54 = 87.9%
 8 146+ 247/ 146+ 247+ 54 = 87.9%
--------- ------------------------ ------
TOTALS: 2304+1035/2304+1035+ 684 = 83.0%

Processor Utilization Graph
 0
���

 1
��--------------------

 2
��------------------

 3
��----------------

 4
��--------------

 5
��------------

 6
��----------

 7
���---------

 8
��--------

 ����� = Run ����� = Wait ----- = Idle

 58

RUNTIME GRAPH:
---- -------------------- Processors --------------------
Time 0 1 2 3 4 5 6 7 8 9 10
---- --
 0 0
 4 0
 8 0
 12 0
 16 0
 20 0
 24 0
 28 0 1
 32 0 1 2
 36 0 1 2 3
 40 0 . 2 3 4
 44 0 . 2 3 4 5
 48 0 1 2 3 4 5 6
 52 0 1 2 . 4 5 6 7
 56 . . 2 . . 5 6 7 8
 60 . . 2 . . . 6 7 8
 64 . . 2 3 . . . 7 8
 68 . . 2 3 8
 72 . . 2 3
 76 . 1 2 3
 80 . 1 2 3 4
 84 . . 2 3 4
 88 . . 2 3 4
 92 . . 2 3 4
 96 . . 2 3 4 5 . . .
 100 . . 2 3 4 5 . . .
 104 . 1 2 3 4 5 . . .
 108 . 1 2 3 4 5 . . .
 112 . . 2 3 4 5 6 . .
 116 . . 2 3 4 5 6 . .
 120 . . 2 3 4 5 6 . .
 124 . . 2 3 4 5 6 . .
 128 . 1 2 3 4 5 6 7 .
 132 . 1 2 3 4 5 6 7 .
 136 . . 2 3 4 5 6 7 .
 140 . . 2 3 4 5 6 7 .
 144 . . 2 3 4 5 6 7 8
 148 . . 2 3 4 5 6 7 8
 152 . . 2 3 4 5 6 7 8
 156 . 1 2 3 4 5 6 7 .
 160 . 1 2 3 4 5 6 7 .
 164 . . 2 3 4 5 6 7 .
 168 . . 2 3 4 5 6 7 .
 172 . . 2 3 4 5 6 7 8
 176 . . 2 3 4 5 6 7 8
 180 . . 2 3 4 5 6 7 8
 184 . 1 2 3 4 5 6 7 .
 188 . 1 2 3 4 5 6 7 .
 192 . . 2 3 4 5 6 7 .
 196 . . 2 3 4 5 6 7 .
 200 . . 2 3 4 5 6 7 8
 204 . . 2 3 4 5 6 7 8
 208 . . 2 3 4 5 6 7 .
 212 . 1 2 3 4 5 6 7 .
 216 . 1 2 3 4 5 6 7 .

 59

 220 . . 2 3 4 5 6 7 .
 224 . . 2 3 4 5 6 7 8
 228 . . 2 3 4 5 6 7 8
 232 . . 2 3 4 5 6 7 8
 236 . 1 2 3 4 5 6 7 .
 240 . 1 2 3 4 5 6 7 .
 244 . . 2 3 4 5 6 7 .
 248 . . 2 3 4 5 6 7 .
 252 . . 2 3 4 5 6 7 8
 256 . . 2 3 4 5 6 7 8
 260 . . 2 3 4 5 6 7 8
 264 . 1 2 3 4 5 6 7 .
 268 . 1 2 3 4 5 6 7 .
 272 . . 2 3 4 5 6 7 .
 276 . . 2 3 4 5 6 7 .
 280 . . 2 3 4 5 6 7 8
 284 . . 2 3 4 5 6 7 8
 288 . . 2 3 4 5 6 7 8
 292 . 1 2 3 4 5 6 7 .
 296 . 1 2 3 4 5 6 7 .
 300 . . 2 3 4 5 6 7 .
 304 . . 2 3 4 5 6 7 .
 308 . . 2 3 4 5 6 7 8
 312 . . 2 3 4 5 6 7 8
 316 . . 2 3 4 5 6 7 .
 320 . 1 2 3 4 5 6 7 .
 324 . 1 2 3 4 5 6 7 .
 328 . . 2 3 4 5 6 7 .
 332 . . 2 3 4 5 6 7 8
 336 . . 2 3 4 5 6 7 8
 340 . . 2 3 4 5 6 7 8
 344 . 1 2 3 4 5 6 7 .
 348 . 2 3 4 5 6 7 .
 352 . 2 3 4 5 6 7 .
 356 . 2 3 4 5 6 7 .
 360 . 2 3 4 5 6 7 8
 364 . 3 4 5 6 7 8
 368 . 3 4 5 6 7 8
 372 . 3 4 5 6 7 .
 376 . 3 4 5 6 7 .
 380 . 4 5 6 7 .
 384 . 4 5 6 7 .
 388 . 4 5 6 7 8
 392 . 4 5 6 7 8
 396 . 5 6 7 8
 400 . 5 6 7 .
 404 . 5 6 7 .
 408 . 5 6 7 .
 412 . 6 7 .
 416 . 6 7 8
 420 . 6 7 8
 424 . 6 7 .
 428 . 7 .
 432 . 7 .
 436 . 7 .
 440 . 7 8
 444 . 8
 447

 60

 Appendix G

 Concurrent Pascal-S Source Listing
 File 1: CPS.PAS

(*$D-,B-,R+,U+ Concurrent Pascal-S *)
program pascals(input, output);
(* author: N. Wirth, E.T.H. ch--8092 Zurich, 1.3.76 *)
(* modified: M. Ben-Ari, Tel Aviv Univ, 1980 *)
(* C. T. Zahn, Pace Univ, 1988 *)
(* M. Camillone, Pace Univ, 1992 *)
uses DOS, CRT;
const DEBUG = true; (* to control extra output *)
 WAKESEM = false; (* controls semaphore signal behavior *)
 USEQUANTUM = false; (* to context switch after quantum or 1 instr. *)
 pmax = 10; (* max no. of simultaneous processes *)
 stmax = 5000; (* total stacksize *)
 mainsize = 2000; (* global data in main process *)
 quantmin = 10; (* minimum quantum size *)
 quantwidth = 10; (* variance of quantum size *)
 single = 1; (* identifies a single communication request *)
 select = 0; (* integer values *)
 send = 1; (* of *)
 receive = 2; (* communication commands *)
 purebool = 3; (* "direction" for guard only containing Boolean *)

 nkw = 27; (* no. of keywords *)
 alng = 10; (* no. of significant chars in ident *)
 llng = 70; (* input line length *)
 kmax = 5; (* max no. of significant digits *)
 tmax = 70; (* size of table *)
 bmax = 20; (* size of block-table *)
 amax = 10; (* size of array table *)
 cmax = 500; (* size of code *)
 lmax = 7; (* maximum level *)
 smax = 500; (* size of string table *)
 omax = 70; (* highest order code *)
 xmax = 30000;
 nmax = 30000;
 lineleng = 80; (* output line length *)
 linelimit = 400; (* max lines to print *)

type symbol = (intcon, charcon, stringsy,
 notsy, plus, minus, times, idiv, imod, andsy, orsy,
 eql, neq, gtr, geq, lss, leq,
 lparent, rparent, lbrack, rbrack, comma, semicolon,
 period, bar, ampersand, arrow, pound,
 colon, becomes, constsy, typesy, varsy, functionsy,
 proceduresy, arraysy, programsy, ident, selectsy,
 beginsy, cobegsy, ifsy, repeatsy, whilesy, forsy,
 endsy, coendsy, elsesy, untilsy, ofsy, dosy, tosy,
 thensy);
 index = -xmax .. +xmax;
 alfa = packed array [1..alng] of char;
 object = (konstant, variable, type1, prozedure, funktion);
 types = (notyp, ints, bools, chars, semas, chans, arrays);
 er = (erid, ertyp, erkey, erpun, erpar, ernf,

 61

 erdup, erch, ersh, erln);
 symset = set of symbol;
 typset = set of types;
 item = record typ : types; ref : index; end;
 order = packed record
 f : -omax .. +omax;
 x : -lmax .. +lmax;
 y : -nmax .. +nmax;
 end;
var sy : symbol; (* last symbol read by insymbol *)
 id : alfa; (* identifier from insymbol *)
 inum : integer; (* integer from insymbol *)
 rnum : real; (* real number from insymbol *)
 sleng : integer; (* string length *)
 ch : char; (* last character read from source *)
 line : array[1..llng] of char;
 cc : integer; (* character counter *)
 lc : integer; (* program location counter *)
 ll : integer; (* length of current line *)
 errs : set of er;
 errpos : integer;
 progname : alfa;
 skipflag : boolean;
 constbegsys, typebegsys, blockbegsys, facbegsys,
 statbegsys : symset;
 key : array[1..nkw] of alfa;
 ksy : array[1..nkw] of symbol;
 sps : array[char] of symbol; (* special symbols *)
 t, a, b, sx, c1, c2, k : integer; (* indices to tables *)
 stantyps : typset;
 display : array[0..lmax] of integer;
 parseguard : boolean;
 c : char; (* user's response to questions *)
 Screen, Keys : text;

 tab : array[0..tmax] of (* identifier table *)
 packed record
 name : alfa; link : index;
 obj : object; typ : types;
 ref : index; normal : boolean;
 lev : 0..lmax; adr : integer;
 end;
 atab : array[1..amax] of (* array table *)
 packed record
 inxtyp, eltyp : types;
 elref, low, high, elsize, size : index;
 end;
 btab : array[1..bmax] of (* block table *)
 packed record
 last, lastpar, psize, vsize : index;
 end;
 stab : packed array[0..smax] of char; (* string table *)
 code : array[0..cmax] of order;
 CODELIST : boolean; (* for listing of machine code *)
 TRACE : boolean; (* to trace execution -- wait, signal etc. *)
 ShowInternal : boolean; (* display sumtab and list of waits & signals *)
 Adaptive : boolean; (* for Adaptive printout mode of Runtime Graph *)

procedure DumpGlobalNames;
 var k : integer;
begin

 62

 writeln; writeln;
 writeln('Global Variables:');
 writeln(' ':3, 'FBsema ', ' ', 'OFFSET: ', 5:5);
 for k := 0 to t do with tab[k] do
 if (lev = 1) and (obj = variable) then
 writeln(' ':3, name, ' ', 'OFFSET: ', adr:5);
 writeln; writeln;
end; (* DumpGlobalNames *)

procedure DateAndTime;
 var yr, mon, day, wkdy, hr, min, sec, s100 : word;
begin
 GetDate(yr, mon, day, wkdy);
 GetTime(hr, min, sec, s100);
 write(' ', mon, '/', day, '/', yr, ' -- ');
 if hr = 0 then write('12:')
 else if hr > 12 then write(hr - 12, ':')
 else write(hr, ':');
 if min < 10 then write('0');
 write(min, ':');
 if sec < 10 then write('0');
 write(sec);
 if hr > 11 then write('pm')
 else write('am');
 writeln(' ----')
end; (* DateAndTime *)

(*$I cpslex.pas *)

(* -- BLOCK --- *)

procedure block(fsys : symset; isfun : boolean; level : integer);
 type conrec =
 record tp : types; i : integer end;
 var dx : integer; (* data allocation index *)
 prt : integer; (* t-index of this procedure *)
 prb : integer; (* b-index of this procedure *)
 x : integer;

 procedure skip(fsys : symset; n : er);
 begin
 error(n); skipflag := true;
 while not (sy in fsys) do insymbol;
 if skipflag then endskip
 end; (* skip *)

 procedure test(s1, s2 : symset; n : er);
 begin
 if not (sy in s1) then skip(s1+s2, n)
 end; (* test *)

 procedure testsemicolon;
 begin
 if sy = semicolon then insymbol else error(erpun);
 test([ident]+blockbegsys, fsys, erkey)
 end; (* testsemicolon *)

 procedure enter(id : alfa; k : object);
 var j, l : integer;
 begin
 if t = tmax then fatal(1)

 63

 else
 begin
 tab[0].name := id;
 j := btab[display[level]].last; l := j;
 while tab[j].name <> id do j := tab[j].link;
 if j <> 0 then error(erdup)
 else
 begin
 t := t+1;
 with tab[t] do
 begin
 name := id; link := l;
 obj := k; typ := notyp;
 ref := 0; lev := level; adr := 0
 end;
 btab[display[level]].last := t
 end
 end
 end; (* enter *)

 function loc(id : alfa) : integer;
 var i, j : integer;
 begin (* locate id in table *)
 i := level; tab[0].name := id; (* sentinel *)
 repeat
 j := btab[display[i]].last;
 while tab[j].name <> id do j := tab[j].link;
 i := i-1
 until (i<0) or (j<>0);
 if j = 0 then error(ernf);
 loc := j
 end; (* loc *)

 procedure entervariable;
 begin
 if sy = ident then
 begin enter(id, variable); insymbol end
 else error(erid)
 end; (* entervariable *)

 procedure constant(fsys : symset; var c : conrec);
 var x, sign : integer;
 begin
 c.tp := notyp; c.i := 0;
 test(constbegsys, fsys, erkey);
 if sy in constbegsys then
 begin
 if sy = charcon then
 begin c.tp := chars; c.i := inum; insymbol end
 else
 begin
 sign := 1;
 if sy in [plus,minus] then
 begin
 if sy = minus then sign := -1;
 insymbol
 end;
 if sy = ident then
 begin
 x := loc(id);
 if x <> 0 then

 64

 if tab[x].obj <> konstant then error(ertyp)
 else
 begin
 c.tp := tab[x].typ;
 c.i := sign*tab[x].adr
 end;
 insymbol
 end
 else if sy = intcon then
 begin c.tp := ints; c.i := sign*inum; insymbol end
 else skip(fsys, erkey)
 end
 end
 end; (* constant *)

 procedure typ(fsys : symset; var tp : types; var rf, sz : integer);
 var x : integer;
 eltp : types; elrf : integer;
 elsz, offset, t0, t1 : integer;

 procedure arraytyp(var aref, arsz : integer);
 var eltp : types;
 low, high : conrec;
 elrf, elsz : integer;
 begin
 constant([colon,rbrack,ofsy]+fsys, low);
 if sy = colon then insymbol else error(erpun);
 constant([rbrack,comma,ofsy]+fsys, high);
 if high.tp <> low.tp then
 begin error(ertyp); high.i := low.i end;
 enterarray(low.tp, low.i, high.i);
 aref := a;
 if sy = comma then
 begin
 insymbol; eltp := arrays; arraytyp(elrf, elsz)
 end
 else
 begin
 if sy = rbrack then insymbol else error(erpun);
 if sy = ofsy then insymbol else error(erkey);
 typ(fsys, eltp, elrf, elsz)
 end;
 with atab[aref] do
 begin
 arsz := (high-low+1)*elsz; size := arsz;
 eltyp := eltp; elref := elrf; elsize := elsz
 end
 end; (* arraytyp *)

 begin (* typ *)
 tp := notyp; rf := 0; sz := 0;
 test(typebegsys, fsys, erid);
 if sy in typebegsys then
 begin
 if sy = ident then
 begin
 x := loc(id);
 if x <> 0 then
 with tab[x] do
 if obj <> type1 then
 error(ertyp)

 65

 else
 begin
 tp := typ; rf := ref; sz := adr;
 if tp = notyp then error(ertyp)
 end;
 insymbol
 end
 else if sy = arraysy then
 begin
 insymbol;
 if sy = lbrack then insymbol else error(erpun);
 tp := arrays; arraytyp(rf, sz)
 end
 else test(fsys, [], erkey)
 end
 end; (* typ *)

 procedure parameterlist; (* formal parameter list *)
 var
 tp : types;
 rf, sz, x, t0 : integer;
 valpar : boolean;
 begin
 insymbol;
 tp := notyp; rf := 0; sz := 0;
 test([ident,varsy], fsys+[rparent], erpar);
 while sy in [ident,varsy] do
 begin
 if sy <> varsy then
 valpar := true
 else
 begin
 insymbol; valpar := false
 end;
 t0 := t; entervariable;
 while sy = comma do
 begin
 insymbol; entervariable
 end;
 if sy = colon then
 begin
 insymbol;
 if sy <> ident then error(erid)
 else
 begin
 x := loc(id); insymbol;
 if x <> 0 then
 with tab[x] do
 if obj <> type1 then error(ertyp)
 else
 begin
 tp := typ; rf := ref;
 if valpar then sz := adr
 else sz := 1
 end;
 end;
 test([semicolon,rparent],
 [comma,ident]+fsys, erpun)
 end
 else error(erpun);
 while t0 < t do

 66

 begin
 t0 := t0+1;
 with tab[t0] do
 begin
 typ := tp; ref := rf;
 normal := valpar; adr := dx;
 lev := level; dx := dx+sz
 end
 end;
 if sy <> rparent then
 begin
 if sy = semicolon then insymbol
 else error(erpun);
 test([ident,varsy], [rparent]+fsys, erkey)
 end
 end; (* while *)
 if sy = rparent then
 begin
 insymbol;
 test([semicolon,colon], fsys, erkey)
 end
 else error(erpun)
 end; (* parameterlist *)

 procedure constantdeclaration;
 var c : conrec;
 begin
 insymbol;
 test([ident], blockbegsys, erid);
 while sy = ident do
 begin
 enter(id, konstant); insymbol;
 if sy = eql then insymbol
 else error(erpun);
 constant([semicolon,comma,ident]+fsys, c);
 tab[t].typ := c.tp; tab[t].ref := 0;
 tab[t].adr := c.i; testsemicolon
 end
 end; (* constantdeclaration *)

 procedure typedeclaration;
 var tp : types; rf, sz, t1 : integer;
 begin
 insymbol;
 test([ident], blockbegsys, erid);
 while sy = ident do
 begin
 enter(id, type1); t1 := t; insymbol;
 if sy = eql then insymbol
 else error(erpun);
 typ([semicolon,comma,ident]+fsys, tp, rf, sz);
 with tab[t1] do
 begin
 typ := tp; ref := rf; adr := sz
 end;
 testsemicolon
 end
 end; (* typedeclaration *)

 procedure variabledeclaration;
 var t0, t1, rf, sz : integer; tp : types;

 67

 begin
 insymbol;
 while sy = ident do
 begin
 t0 := t; entervariable;
 while sy = comma do
 begin
 insymbol; entervariable
 end;
 if sy = colon then insymbol
 else error(erpun);
 t1 := t;
 typ([semicolon,comma,ident]+fsys, tp, rf, sz);
 while t0 < t1 do
 begin
 t0 := t0+1;
 with tab[t0] do
 begin
 typ := tp; ref := rf;
 lev := level; adr := dx;
 normal := true; dx := dx+sz
 end
 end;
 testsemicolon
 end
 end; (* variabledeclaration *)

 procedure procdeclaration;
 var isfun : boolean;
 begin
 isfun := (sy = functionsy);
 insymbol;
 if sy <> ident then
 begin
 error(erid); id := ' '
 end;
 if isfun then enter(id, funktion)
 else enter(id, prozedure);
 tab[t].normal := true;
 insymbol;
 block([semicolon]+fsys, isfun, level+1);
 if sy = semicolon then insymbol
 else error(erpun);
 emit(32+ord(isfun)) (* exit *)
 end; (* procdeclaration *)

(* -- statement *)

 procedure statement(fsys : symset);
 var i : integer; x : item;

 procedure expression(fsys : symset; var x : item); forward;

 procedure selector(fsys : symset; var v : item);
 var x : item; a, j : integer;
 begin
 if sy <> lbrack then error(ertyp);
 repeat
 insymbol;
 expression(fsys+[comma,rbrack], x);
 if v.typ <> arrays then error(ertyp)

 68

 else
 begin
 a := v.ref;
 if atab[a].inxtyp <> x.typ then error(ertyp)
 else emit1(21,a);
 v.typ := atab[a].eltyp;
 v.ref := atab[a].elref
 end
 until sy <> comma;
 if sy = rbrack then insymbol else error(erpun);
 test(fsys, [], erkey)
 end; (* selector *)

 procedure call(fsys : symset; i : integer);
 var x : item; lastp, cp, k : integer;
 begin
 emit1(18,i); (* mark stack *)
 lastp := btab[tab[i].ref].lastpar; cp := i;
 if sy = lparent then
 begin (* actual parameter list *)
 repeat
 insymbol;
 if cp >= lastp then error(erpar)
 else
 begin
 cp := cp+1;
 if tab[cp].normal then
 begin (* value parameter *)
 expression(fsys+[comma,colon,rparent], x);
 if x.typ = tab[cp].typ then
 begin
 if x.ref <> tab[cp].ref then
 error(ertyp)
 else if x.typ = arrays then
 emit1(22, atab[x.ref].size)
 end
 else if x.typ <> notyp then error(ertyp)
 end
 else
 begin (* variable parameter *)
 if sy <> ident then error(erid)
 else
 begin
 k := loc(id); insymbol;
 if k <> 0 then
 begin
 if tab[k].obj <> variable then
 error(erpar);
 x.typ := tab[k].typ;
 x.ref := tab[k].ref;
 if tab[k].normal then
 emit2(0,tab[k].lev,tab[k].adr)
 else
 emit2(1,tab[k].lev,tab[k].adr);
 if sy = lbrack then
 selector(fsys+[comma,colon,
 rparent],x);
 if (x.typ<>tab[cp].typ)
 or (x.ref<>tab[cp].ref) then
 error(ertyp)
 end

 69

 end
 end
 end;
 test([comma,rparent], fsys, erkey)
 until sy <> comma;
 if sy = rparent then insymbol else error(erpun)
 end;
 if cp < lastp then error(erpar); (* too few parms *)
 emit1(19, btab[tab[i].ref].psize-1);
 if tab[i].lev < level then
 emit2(3,tab[i].lev, level)
 end; (* call *)

 function resulttype(a,b : types) : types;
 begin
 if (a>ints) or (b>ints) then
 begin
 error(ertyp); resulttype := notyp
 end
 else if (a=notyp) or (b=notyp) then
 resulttype := notyp
 else
 resulttype := ints
 end; (* resulttype *)

 procedure expression;
 var y : item; op : symbol;

 procedure simpleexpression(fsys : symset; var x : item);
 var y : item; op : symbol;

 procedure term(fsys : symset; var x : item);
 var y : item; op : symbol; ts : typset;

 procedure factor(fsys : symset; var x : item);
 var i,f : integer;
 begin
 x.typ := notyp; x.ref := 0;
 test(facbegsys, fsys, erpun);
 while sy in facbegsys do
 begin
 if sy = ident then
 begin
 i := loc(id); insymbol;
 with tab[i] do case obj of
 konstant:
 begin
 x.typ := typ;
 x.ref := 0;
 emit1(24,adr)
 end;
 variable:
 begin
 x.typ := typ;
 x.ref := ref;
 if sy = lbrack then
 begin
 if normal then
 f := 0
 else f := 1;
 emit2(f,lev,adr);

 70

 selector(fsys,x);
 if x.typ in stantyps then
 emit(34)
 end
 else
 begin
 if x.typ in stantyps then
 if normal then
 f := 1
 else f := 2
 else
 if normal then
 f := 0
 else f := 1;
 emit2(f,lev,adr)
 end
 end;

 type1, prozedure :
 error(ertyp);

 funktion :
 begin
 x.typ := typ;
 if lev <> 0 then
 call(fsys,i)
 else emit1(8,adr)
 end
 end (* with case *)
 end
 else if sy in [charcon,intcon] then
 begin
 if sy = charcon then
 x.typ := chars
 else x.typ := ints;
 emit1(24,inum);
 x.ref := 0; insymbol
 end
 else if sy = lparent then
 begin
 insymbol;
 expression(fsys+[rparent],x);
 if sy = rparent then insymbol
 else error(erpun)
 end
 else if sy = notsy then
 begin
 insymbol;
 factor(fsys,x);
 if x.typ = bools then emit(35)
 else if x.typ <> notyp then
 error(ertyp)
 end;
 test(fsys,facbegsys,erkey)
 end
 end; (* factor *)

 begin (* term *)
 factor(fsys+[times,idiv,imod,andsy],x);
 while sy in [times,idiv,imod,andsy] do
 begin

 71

 op := sy; insymbol;
 factor(fsys+[times,idiv,imod,andsy],y);
 if op = times then
 begin
 x.typ := resulttype(x.typ,y.typ);
 if x.typ = ints then emit(57)
 end
 else if op = andsy then
 begin
 if (x.typ = bools) and (y.typ = bools) then
 emit(56)
 else
 begin
 if (x.typ <> notyp)
 and (y.typ <> notyp) then
 error(ertyp);
 x.typ := notyp
 end
 end
 else (* op in [idiv,imod] *)
 begin
 if (x.typ = ints) and (y.typ = ints) then
 if op = idiv then emit(58)
 else emit(59)
 else
 begin
 if (x.typ <> notyp)
 and (y.typ <> notyp) then
 error(ertyp);
 x.typ := notyp
 end
 end
 end
 end; (* term *)

 begin (* simpleexpression *)
 if sy in [plus,minus] then
 begin
 op := sy; insymbol;
 term(fsys+[plus,minus],x);
 if x.typ > ints then error(ertyp)
 else if op = minus then emit(36)
 end
 else
 term(fsys+[plus,minus,orsy],x);
 while sy in [plus,minus,orsy] do
 begin
 op := sy; insymbol;
 term(fsys+[plus,minus,orsy],y);
 if op = orsy then
 begin
 if (x.typ = bools) and (y.typ = bools) then
 emit(51)
 else
 begin
 if (x.typ <> notyp)
 and (y.typ <> notyp) then
 error(ertyp);
 x.typ := notyp
 end
 end

 72

 else
 begin
 x.typ := resulttype(x.typ,y.typ);
 if x.typ = ints then
 if op = plus then emit(52)
 else emit(53)
 end
 end
 end; (* simpleexpression *)

 begin (* expression *)
 simpleexpression(fsys+[eql,neq,lss,leq,gtr,geq],x);
 if sy in [eql,neq,lss,leq,gtr,geq] then
 begin
 op := sy; insymbol;
 simpleexpression(fsys,y);
 if (x.typ in [notyp,ints,bools,chars])
 and (x.typ = y.typ) then
 case op of
 eql : emit(45);
 neq : emit(46);
 lss : emit(47);
 leq : emit(48);
 gtr : emit(49);
 geq : emit(50)
 end
 else error(ertyp);
 x.typ := bools
 end
 end; (* expression *)

 procedure assignment(lv,ad : integer);
 var x,y : item; f : integer;
 (* tab[i].obj in [variable,prozedure] *)
 begin
 x.typ := tab[i].typ; x.ref := tab[i].ref;
 if tab[i].normal then f := 0 else f := 1;
 emit2(f,lv,ad);
 if sy = lbrack then
 selector([becomes,eql]+fsys,x);
 if sy = becomes then
 insymbol
 else error(erpun);
 if x.typ = semas then
 emit(37); (* for double store *)
 expression(fsys,y);
 if x.typ = semas then
 begin (* semaphore initialization *)
 if y.typ = ints then
 begin
 emit(38);
 (* field 2 of sema set to nilproc *)
 emit1(24,1); emit(52);
 emit1(24,-1); emit(38);
 end
 else error(ertyp)
 end
 else if x.typ = y.typ then
 begin
 if x.typ in stantyps then emit(38)
 else if x.ref <> y.ref then error(ertyp)

 73

 else if x.typ = arrays then
 emit1(23,atab[x.ref].size)
 end
 else error(ertyp)
 end; (* assignment *)

 procedure compoundstatement;
 begin
 insymbol;
 statement([semicolon,endsy]+fsys);
 while sy in [semicolon]+statbegsys do
 begin
 if sy = semicolon then insymbol
 else error(erpun);
 statement([semicolon,endsy]+fsys)
 end;
 if sy = endsy then insymbol else error(erkey)
 end; (* compoundstatement *)

 procedure parblock;
 var lc1 : integer;

 procedure process;
 begin
 insymbol;
 (* wait on FBsema *)
 emit2(0,1,5); emit(6);
 emit1(4,level); (* fork new child *)
 lc1 := lc; emit1(10,0); (* branch around *)
 statement([semicolon,bar,coendsy]+fsys);
 while sy in [semicolon]+statbegsys do
 begin
 if sy = semicolon then insymbol
 else error(erpun);
 statement([semicolon,bar,coendsy]+fsys)
 end;
 emit(5); (* kill child *)
 code[lc1].y := lc (* fix early branch *)
 end; (* process *)
 begin
 process;
 while sy = bar do
 process;
 if sy = coendsy then insymbol else error(erkey);
 emit(9) (* put parent to sleep *)
 end; (* compoundstatement *)

 procedure ifstatement;
 var x : item; lc1, lc2 : integer;
 begin
 insymbol;
 expression(fsys+[thensy,dosy],x);
 if not (x.typ in [bools,notyp]) then error(ertyp);
 lc1 := lc; emit(11); (* jmpc *)
 if sy = thensy then insymbol else error(erkey);
 statement(fsys+[elsesy]);
 if sy = elsesy then
 begin
 insymbol; lc2 := lc; emit(10);
 code[lc1].y := lc;
 statement(fsys);

 74

 code[lc2].y := lc
 end
 else
 code[lc1].y := lc
 end; (* ifstatement *)

 procedure repeatstatement;
 var x : item; lc1 : integer;
 begin
 lc1 := lc; insymbol;
 statement([semicolon,untilsy]+fsys);
 while sy in [semicolon]+statbegsys do
 begin
 if sy = semicolon then insymbol
 else error(erpun);
 statement([semicolon,untilsy]+fsys)
 end;
 if sy = untilsy then
 begin
 insymbol;
 expression(fsys,x);
 if not (x.typ in [bools,notyp]) then error(ertyp);
 emit1(11,lc1)
 end
 else error(erkey)
 end; (* repeatstatement *)

 procedure whilestatement;
 var x : item; lc1,lc2 : integer;
 begin
 insymbol; lc1 := lc;
 expression(fsys+[dosy],x);
 if not (x.typ in [bools,notyp]) then error(ertyp);
 lc2 := lc; emit(11);
 if sy = dosy then insymbol else error(erkey);
 statement(fsys);
 emit1(10,lc1); code[lc2].y := lc
 end; (* whilestatement *)

 procedure forstatement;
 var cvt : types; x : item;
 i,lc1,lc2 : integer;
 begin
 insymbol;
 if sy = ident then
 begin
 i := loc(id); insymbol;
 if i = 0 then cvt := ints
 else if tab[i].obj = variable then
 begin
 cvt := tab[i].typ;
 if not tab[i].normal then error(ertyp)
 else emit2(0,tab[i].lev,tab[i].adr);
 if not (cvt in [notyp,ints,bools,chars]) then
 error(ertyp)
 end
 else
 begin
 error(ertyp); cvt := ints
 end
 end

 75

 else
 skip([becomes,tosy,dosy]+fsys,erid);
 if sy = becomes then
 begin
 insymbol;
 expression([tosy,dosy]+fsys,x);
 if x.typ <>cvt then error(ertyp)
 end
 else
 skip([tosy,dosy]+fsys,erpun);
 if sy = tosy then
 begin
 insymbol;
 expression([dosy]+fsys,x);
 if x.typ <> cvt then error(ertyp)
 end
 else
 skip([dosy]+fsys,erkey);
 lc1 := lc; emit(14);
 if sy = dosy then insymbol else error(erkey);
 lc2 := lc;
 statement(fsys);
 emit1(15,lc2); code[lc1].y := lc
 end; (* forstatement *)

 procedure standproc(n : integer);
 var i,f : integer; x,y : item;
 begin
 case n of
 1,2 : (* read *)
 begin
 if sy = lparent then
 begin
 repeat
 insymbol;
 if sy <> ident then error(erid)
 else
 begin
 i := loc(id); insymbol;
 if i <> 0 then
 if tab[i].obj <> variable then
 error(ertyp)
 else
 begin
 x.typ := tab[i].typ;
 x.ref := tab[i].ref;
 if tab[i].normal then
 f := 0
 else f := 1;
 emit2(f,tab[i].lev,tab[i].adr);
 if sy = lbrack then
 selector(fsys+[comma,rparent],x);
 if x.typ in [ints,chars,notyp] then
 emit1(27,ord(x.typ))
 else error(ertyp)
 end
 end;
 test([comma,rparent],fsys,erkey)
 until sy <> comma;
 if sy = rparent then insymbol else error(erpun)
 end;

 76

 if n = 2 then emit(62)
 end;

 3,4 :
 begin (* write *)
 if TRACE then emit(12);
 if sy = lparent then
 begin
 repeat
 insymbol;
 if sy = stringsy then
 begin
 emit1(24,sleng); emit1(28,inum);
 insymbol
 end
 else
 begin
 expression(fsys+[comma,colon,rparent],x);
 if not (x.typ in stantyps) then
 error(ertyp);
 emit1(29,ord(x.typ))
 end
 until sy <> comma;
 if sy = rparent then insymbol
 else error(erpun)
 end;
 if n = 4 then emit(63);
 if TRACE then emit(13)
 end;

 5,6 : (* wait, signal *)
 if sy <> lparent then error(erpun)
 else
 begin
 insymbol;
 if sy <> ident then error(erid)
 else
 begin
 i := loc(id); insymbol;
 if i <> 0 then
 if tab[i].obj <> variable then
 error(ertyp)
 else
 begin
 x.typ := tab[i].typ;
 x.ref := tab[i].ref;
 if tab[i].normal then
 f := 0
 else f := 1;
 emit2(f,tab[i].lev,tab[i].adr);
 if sy = lbrack then
 selector(fsys+[rparent],x);
 if x.typ = semas then
 emit(n+1)
 else error(ertyp)
 end
 end;
 if sy = rparent then insymbol
 else error(erpun)
 end;

 77

 7 : (* halt *)
 emit(31);

 8 : (* abort *)
 emit(17);

 9 : begin (* getchannel *)
 if sy <> lparent then error(erpun)
 else
 begin
 insymbol;
 if sy <> ident then error(erid)
 else
 begin
 i := loc(id); insymbol;
 if i <> 0 then
 if tab[i].obj <> variable then
 error(ertyp)
 else
 begin
 x.typ := tab[i].typ;
 x.ref := tab[i].ref;
 emit1(24,i); (* load channel *)
 if sy = lbrack then
 selector(fsys+[rparent],x);
 if x.typ = chans then
 emit(42)
 else error(ertyp)
 end
 end;
 if sy = rparent then insymbol
 else error(erpun)
 end
 end; (* getchannel *)

 10 : begin (* send *)
 if sy <> lparent then error(erpun)
 else
 begin
 if not parseguard then emit(24); (* sentinel *)
 insymbol;
 if sy = ident then
 begin
 i := loc(id); insymbol;
 if i <> 0 then
 if tab[i].obj <> variable then
 error(ertyp)
 else
 begin
 x.typ := tab[i].typ;
 x.ref := tab[i].ref;
 emit2(1,tab[i].lev,tab[i].adr);
 if sy = lbrack then
 selector(fsys+[rparent,comma],x)
 end
 end
 else
 begin
 expression(fsys+[comma,rparent],x);
 if not (x.typ in stantyps) then
 error(ertyp)

 78

 end;
 if sy <> comma then error(erpun)
 else insymbol;
 if sy <> ident then error(erid)
 else
 begin
 i := loc(id); insymbol;
 if i <> 0 then
 if tab[i].obj <> variable then
 error(ertyp)
 else
 begin
 x.typ := tab[i].typ;
 x.ref := tab[i].ref;
 emit1(24,i); (* load channel *)
 if sy = lbrack then
 selector(fsys+[rparent],x);
 if x.typ <> chans then error(ertyp)
 end
 end;
 emit1(41,send); (* post *)
 if not parseguard then emit1(40,single); (* comm *)
 if sy = rparent then insymbol
 else error(erpun)
 end
 end; (* send *)

 11 : begin (* receive *)
 if sy <> lparent then error(erpun)
 else
 begin
 if not parseguard then emit(24); (* sentinel *)
 insymbol;
 if sy <> ident then error(erid)
 else
 begin
 i := loc(id); insymbol;
 if i <> 0 then
 if tab[i].obj <> variable then
 error(ertyp)
 else
 begin
 x.typ := tab[i].typ;
 x.ref := tab[i].ref;
 emit1(24,i); (* load channel *)
 if sy = lbrack then
 selector(fsys+[comma,rparent],x);
 if x.typ <> chans then error(ertyp)
 end
 end;
 if sy <> comma then error(erpun)
 else insymbol;
 if sy <> ident then error(erid)
 else
 begin
 i := loc(id); insymbol;
 if i <> 0 then
 if tab[i].obj <> variable then
 error(ertyp)
 else
 begin

 79

 x.typ := tab[i].typ;
 x.ref := tab[i].ref;
 if tab[i].normal then
 f := 0
 else f := 1;
 emit2(f,tab[i].lev,tab[i].adr);
 if sy = lbrack then
 selector(fsys+[rparent],x)
 end
 end;
 emit1(41,receive); (* post *)
 if not parseguard then emit1(40,single); (* comm *)
 if sy = rparent then insymbol
 else error(erpun)
 end
 end; (* receive *)

 end (* case *)
 end; (* standproc *)

 procedure selectstatement;
 type jmpary = array[0..50] of integer;
 var lc1, i : integer;
 lc3 : jmpary;

 procedure guardcomm(var lc1 : integer; var lc3 : jmpary);
 var lc2 : integer;

 procedure guard(var lc1, lc2 : integer);
 var x : item;
 begin
 parseguard := true;
 if (id = 'send ') or (id = 'receive ') then
 begin
 statement(fsys+[arrow]);
 lc2 := lc;
 emit(10);
 lc1 := -1 (* no boolean *)
 end
 else
 begin
 expression(fsys+[ampersand,arrow], x);
 if not (x.typ in [bools,notyp]) then error(ertyp);
 lc1 := lc;
 emit(11); (* jmpc *)
 if sy = ampersand then
 begin
 insymbol;
 if (id = 'send ') or (id = 'receive ') then
 statement(fsys+[arrow])
 else error(erkey)
 end
 else
 emit(43); (* post pure Boolean *)
 lc2 := lc;
 emit(10)
 end;
 parseguard := false
 end; (* guard *)

 begin (* guardcomm *)

 80

 guard(lc1, lc2);
 if sy = arrow then insymbol
 else error(erpun);
 statement(fsys+[pound]); (* commands *)
 lc3[0] := lc3[0] + 1;
 lc3[lc3[0]] := lc;
 emit(10); (* jmp to end *)
 code[lc2].y := lc
 end; (* guardcomm *)

 begin (* selectstatement *)
 emit1(24,select); (* enter select statement block - push sentinel *)
 lc3[0] := 0;
 insymbol;
 guardcomm(lc1, lc3);
 if lc1 <> -1 then
 code[lc1].y := lc;
 while sy = pound do
 begin
 insymbol;
 guardcomm(lc1, lc3);
 if lc1 <> -1 then
 code[lc1].y := lc
 end;
 if sy = endsy then insymbol
 else error(erkey);
 emit1(40,select); (* comm *)
 for i := 1 to lc3[0] do
 code[lc3[i]].y := lc
 end; (* selectstatement *)

 begin (* statement *)
 if sy in statbegsys+[ident] then
 case sy of
 ident :
 begin
 i := loc(id); insymbol;
 if i <> 0 then
 case tab[i].obj of
 konstant,type1 : error(ertyp);
 variable : assignment(tab[i].lev,tab[i].adr);
 prozedure :
 if tab[i].lev <> 0 then call(fsys,i)
 else standproc(tab[i].adr);
 funktion :
 if tab[i].ref = display[level] then
 assignment(tab[i].lev+1,0)
 else error(ertyp)
 end (* case *)
 end;

 beginsy : compoundstatement;

 cobegsy : parblock;

 ifsy : ifstatement;

 whilesy : whilestatement;

 repeatsy : repeatstatement;

 81

 forsy : forstatement;

 selectsy : selectstatement

 end; (* case *)
 test(fsys,[],erpun)
 end; (* statement *)

begin (* block *)
 dx := 5;
 (* global FBsema variable *)
 if level = 1 then dx := dx+2;
 prt := t;
 if level > lmax then fatal(5);
 test([lparent,colon,semicolon],fsys,erpun);
 enterblock; display[level] := b; prb := b;
 tab[prt].typ := notyp; tab[prt].ref := prb;
 if (sy = lparent) and (level > 1) then
 parameterlist;
 btab[prb].lastpar := t; btab[prb].psize := dx;
 if isfun then
 if sy = colon then
 begin
 insymbol; (* function type *)
 if sy = ident then
 begin
 x := loc(id); insymbol;
 if x <> 0 then
 if tab[x].obj <> type1 then
 error(ertyp)
 else if tab[x].typ in stantyps then
 tab[prt].typ := tab[x].typ
 else error(ertyp)
 end
 else skip([semicolon]+fsys,erid)
 end
 else error(erpun);
 if sy = semicolon then insymbol else error(erpun);
 repeat
 if sy = constsy then constantdeclaration;
 if sy = typesy then typedeclaration;
 if sy = varsy then variabledeclaration;
 btab[prb].vsize := dx;
 while sy in [proceduresy,functionsy] do
 procdeclaration;
 test([beginsy],blockbegsys+statbegsys,erkey)
 until sy in statbegsys;
 tab[prt].adr := lc;
 insymbol; statement([semicolon,endsy]+fsys);
 while sy in [semicolon]+statbegsys do
 begin
 if sy = semicolon then insymbol
 else error(erpun);
 statement([semicolon,endsy]+fsys)
 end;
 if sy = endsy then insymbol else error(erkey);
 test(fsys+[period],[],erkey)
end; (* block *)

(*$I cpsint.pas *)

 82

(* --- MAIN -------*)

begin (* main *)
 ClrScr;
 AssignCrt(Screen); rewrite(Screen);
 AssignCrt(Keys); reset(Keys);
 CheckEOF := true;
 Assign(input, ''); reset(input);
 Assign(output, ''); rewrite(output);

 write('------- CONCURRENT PASCAL-S BY BEN-ARI -------- ');
 DateAndTime;
 writeln(Screen);
 write(Screen,
 'Do you want to see the MACHINE CODE generated for this program? ');
 readln(Keys, c);
 if (c = 'y') or (c = 'Y') then CODELIST := true
 else CODELIST := false;
 write(Screen,
 'Do you want to see a TRACE of the execution of this program? ');
 readln(Keys, c);
 if (c = 'y') or (c = 'Y') then TRACE := true
 else TRACE := false;
 write(Screen,
 'Do you want to see EXTRA INTERNAL INFORMATION to aid in debugging? ');
 readln(Keys, c);
 if (c = 'y') or (c = 'Y') then ShowInternal := true
 else ShowInternal := false;
 write(Screen,
 'Do you want to limit the RUNTIME EXECUTION GRAPH to 2 pages? ');
 readln(Keys, c);
 if (c = 'y') or (c = 'Y') then Adaptive := true
 else Adaptive := false;
 writeln(Screen);
 writeln('USER PROGRAM:');

 key[1] := 'and '; key[2] := 'array ';
 key[3] := 'begin '; key[4] := 'cobegin ';
 key[5] := 'coend '; key[6] := 'const ';
 key[7] := 'div '; key[8] := 'do ';
 key[9] := 'else '; key[10] := 'end ';
 key[11] := 'for '; key[12] := 'function ';
 key[13] := 'if '; key[14] := 'mod ';
 key[15] := 'not '; key[16] := 'of ';
 key[17] := 'or '; key[18] := 'procedure ';
 key[19] := 'program '; key[20] := 'repeat ';
 key[21] := 'select '; key[22] := 'then ';
 key[23] := 'to '; key[24] := 'type ';
 key[25] := 'until '; key[26] := 'var ';
 key[27] := 'while ';

 ksy[1] := andsy; ksy[2] := arraysy;
 ksy[3] := beginsy; ksy[4] := cobegsy;
 ksy[5] := coendsy; ksy[6] := constsy;
 ksy[7] := idiv; ksy[8] := dosy;
 ksy[9] := elsesy; ksy[10] := endsy;
 ksy[11] := forsy; ksy[12] := functionsy;
 ksy[13] := ifsy; ksy[14] := imod;
 ksy[15] := notsy; ksy[16] := ofsy;
 ksy[17] := orsy; ksy[18] := proceduresy;
 ksy[19] := programsy; ksy[20] := repeatsy;

 83

 ksy[21] := selectsy; ksy[22] := thensy;
 ksy[23] := tosy; ksy[24] := typesy;
 ksy[25] := untilsy; ksy[26] := varsy;
 ksy[27] := whilesy;

 sps['+'] := plus; sps['#'] := pound;
 sps['('] := lparent; sps[')'] := rparent;
 sps['='] := eql; sps[','] := comma;
 sps['['] := lbrack; sps[']'] := rbrack;
 sps['"'] := neq; sps['&'] := ampersand;
 sps[';'] := semicolon; sps['*'] := times;
 sps['|'] := bar;

 constbegsys := [plus,minus,intcon,charcon,ident];
 typebegsys := [ident,arraysy];
 blockbegsys := [constsy,typesy,varsy,proceduresy,
 functionsy,beginsy,cobegsy];
 facbegsys := [intcon,charcon,ident,lparent,notsy];
 statbegsys := [beginsy,cobegsy,ifsy,selectsy,
 whilesy,repeatsy,forsy];
 stantyps := [notyp,ints,bools,chars,semas,chans];
 parseguard := false;
 lc := 0; ll := 0; cc := 0; ch := ' ';
 errpos := 0; errs := []; insymbol;
 t := -1; a := 0; b := 1; sx := 0; c2 := 0;
 display[0] := 1;
 skipflag := false;
 if sy <> programsy then error(erkey)
 else
 begin
 insymbol;
 if sy <> ident then error(erid)
 else
 begin progname := id; insymbol end
 end;

 enter(' ', variable,notyp,0); (* sentinel *)
 enter('false ', konstant,bools,0);
 enter('true ', konstant,bools,1);
 enter('char ', type1,chars,1);
 enter('boolean ', type1,bools,1);
 enter('integer ', type1,ints,1);
 enter('semaphore ', type1,semas,2);
 enter('channel ', type1,chans,3);
 enter('eof ', funktion,bools,17);
 enter('eoln ', funktion,bools,18);
 enter('read ', prozedure,notyp,1);
 enter('readln ', prozedure,notyp,2);
 enter('write ', prozedure,notyp,3);
 enter('writeln ', prozedure,notyp,4);
 enter('wait ', prozedure,notyp,5);
 enter('signal ', prozedure,notyp,6);
 enter('halt ', prozedure,notyp,7);
 enter('abort ', prozedure,notyp,8);
 enter('getchannel', prozedure,notyp,9);
 enter('send ', prozedure,notyp,10);
 enter('receive ', prozedure,notyp,11);
 enter(' ', prozedure,notyp,0); (* ??? *)

 with btab[1] do
 begin

 84

 last := t; lastpar := 1; psize := 0; vsize := 0
 end;
 block(blockbegsys+statbegsys, false, 1);
 if sy <> period then error(erpun);
 if btab[2].vsize > mainsize then error(erln);
 emit(31); (* halt *)
 if not eof(input) then readln(input);
 if errs=[] then
 begin
 if DEBUG then
 DumpGlobalNames;
 if CODELIST then (* print code *)
 begin
 writeln;
 writeln('CODE:');
 for k := 0 to lc-1 do with code[k] do
 writeln(k:5, ') ', f:4, x:10, y:10);
 writeln
 end;
 writeln; write('------------- INTERPRET ');
 if WAKESEM then write('with semaphore wakeup.');
 writeln;
 interpret
 end
 else errormsg;
 Close(Screen); Close(Keys)
end.

 85

 Appendix H

 Concurrent Pascal-S Source Listing
 File 2: CPSLEX.PAS

(* CPSLEX.PAS *)
procedure errormsg;
 var k : er; msg : array[er] of alfa;
begin
 msg[erid] := 'identifier'; msg[ertyp] := 'type ';
 msg[erkey] := 'keyword '; msg[erpun] := 'punctuatio';
 msg[erpar] := 'parameter '; msg[ernf] := 'not found ';
 msg[erdup] := 'duplicate '; msg[erch] := 'character ';
 msg[ersh] := 'too short '; msg[erln] := 'too long ';
 writeln('compilation errors');
 writeln; writeln('keywords');
 for k := erid to erln do if k in errs then
 writeln(ord(k), ' ', msg[k])
end; (* errormsg *)

procedure endskip;
begin (* underline skipped part of input *)
 while errpos < cc do
 begin write('_'); errpos := errpos+1 end;
 skipflag := false
end; (* endskip *)

procedure error(n : er);
begin
 if errpos = 0 then write(' ****');
 if cc > errpos then
 begin
 write(' ': cc-errpos, '''', ord(n):2);
 errpos := cc+3; errs := errs+[n]
 end
end; (* error *)

procedure nextch; (* read ch; process line end *)
begin
 if cc = ll then
 begin
 if ll = llng then error(erln);
 if eof(input) then
 begin
 writeln; writeln('program incomplete');
 errormsg; halt
 end;
 if errpos <> 0 then
 begin
 if skipflag then endskip;
 writeln; errpos := 0
 end;
 write(lc:5, ' '); ll := 0; cc := 0;
 while (not eoln(input)) and (ll < llng-2) do
 begin ll := ll+1; read(input,ch); write(ch); line[ll] := ch end;
 writeln; ll := ll+1; line[ll] := ' ';
 if not eoln(input) then
 begin ll := ll+1; line[ll] := ' ' end; (* to force error *)

 86

 readln(input)
 end;
 cc := cc+1; ch := line[cc]
end; (* nextch *)

procedure fatal(n : integer);
 var msg : array[1..6] of alfa;
begin
 writeln; errormsg;
 msg[1] := 'identifier'; msg[2] := 'procedures';
 msg[3] := 'strings '; msg[4] := 'arrays ';
 msg[5] := 'levels '; msg[6] := 'code ';
 writeln(' compiler table for ', msg[n], ' is too small');
 halt
end; (* fatal *)

(* --- INSYMBOL ---- *)

procedure insymbol; (* reads next symbol *)
 label 1,2,3;
 var i, j, k, e : integer;
begin
1: while ch = ' ' do nextch;
 case ch of
 'A' .. 'Z', 'a' .. 'z' :
 begin (* ident or wordsymbol *)
 k := 0; id := ' ';
 repeat
 if k < alng then
 begin k := k+1; id[k] := ch end;
 nextch
 until not (ch in ['A'..'Z','a'..'z','0'..'9']);
 i := 1; j := nkw; (* binary search *)
 repeat
 k := (i+j) div 2;
 if id <= key[k] then j := k-1;
 if id >= key[k] then i := k+1
 until i > j;
 if i-1 > j then sy := ksy[k] else sy := ident
 end;
 '0' .. '9' :
 begin (* number *)
 k := 0; inum := 0; sy := intcon;
 repeat
 inum := inum*10 + ord(ch)-ord('0');
 k := k+1; nextch
 until not (ch in ['0'..'9']);
 if (k > kmax) or (inum > nmax) then
 begin error(erln); inum := 0; k :=0 end
 end;
 ':' :
 begin
 nextch;
 if ch = '=' then
 begin sy := becomes; nextch end
 else sy := colon
 end;
 '-' :
 begin
 nextch;
 if ch = '>' then

 87

 begin sy := arrow; nextch end
 else sy := minus
 end;
 '<' :
 begin
 nextch;
 if ch = '=' then
 begin sy := leq; nextch end
 else if ch = '>' then
 begin sy := neq; nextch end
 else sy := lss
 end;
 '>' :
 begin
 nextch;
 if ch = '=' then
 begin sy := geq; nextch end
 else sy := gtr
 end;
 '.' :
 begin
 nextch;
 if ch = '.' then
 begin sy := colon; nextch end
 else sy := period
 end;
 '''' : (* strings *)
 begin
 k := 0;
 2: nextch;
 if ch = '''' then
 begin nextch; if ch <> '''' then goto 3 end;
 if sx+k = smax then fatal(3);
 stab[sx+k] := ch; k := k+1;
 if cc = 1 then
 begin (* end line *) k := 0 end
 else goto 2;
 3: if k = 1 then
 begin sy := charcon; inum := ord(stab[sx]) end
 else if k = 0 then
 begin error(ersh); sy := charcon; inum := 0 end
 else
 begin
 sy := stringsy; inum := sx;
 sleng := k; sx := sx+k
 end
 end;
 '(' :
 begin (* possible comment *)
 nextch;
 if ch <> '*' then sy := lparent
 else
 begin (* comment *)
 repeat
 while ch <> '*' do nextch;
 nextch
 until ch = ')';
 nextch;
 goto 1
 end
 end;

 88

 '+', '&', '*', ')', '=', ',', '[', ']', ';', '|', '#' :
 begin sy := sps[ch]; nextch end;
 else
 begin error(erch); nextch; goto 1 end
 end
end; (* insymbol *)

(* -- ENTER --- *)

procedure enter(x0 : alfa; x1 : object; x2 : types; x3 : integer);
begin (* standard identifier *)
 t := t+1;
 with tab[t] do
 begin
 name := x0; link := t-1; obj := x1;
 typ := x2; ref := 0; normal := true;
 lev := 0; adr := x3
 end
end; (* enter *)

procedure enterarray(tp : types; l,h : integer);
begin
 if l > h then error(ertyp);
 if (abs(l)>xmax) or (abs(h)>xmax) then
 begin error(ertyp); l:=0; h :=0 end;
 if a = amax then fatal(4)
 else
 begin
 a := a+1;
 with atab[a] do
 begin inxtyp := tp; low := l; high := h end
 end
end; (* enterarray *)

procedure enterblock;
begin
 if b = bmax then fatal(2)
 else
 begin
 b := b+1; btab[b].last := 0;
 btab[b].lastpar := 0
 end
end; (* enterblock *)

procedure emit(fct : integer);
begin
 if lc = cmax then fatal(6);
 with code[lc] do
 begin f := fct; x := 0; y := 0 end;
 lc := lc+1
end; (* emit *)

procedure emit1(fct,b : integer);
begin
 if lc =cmax then fatal(6);
 with code[lc] do
 begin f := fct; x := 0; y := b end;
 lc := lc+1
end; (* emit1 *)

procedure emit2(fct,a,b : integer);

 89

begin
 if lc = cmax then fatal(6);
 with code[lc] do
 begin f := fct; x := a; y := b end;
 lc := lc+1
end; (* emit2 *)

 90

 Appendix I

 Concurrent Pascal-S Source Listing
 File 3: CPSINT.PAS

(* ----------- CPSINT.PAS ------------ *)

procedure interpret;
const
 (* status of a process block *)
 free = 0; running = 1; ready = 2; semablock = 3; sendblock = 4;
 recblock = 5; selblock = 6; sleeping = 7;
 nilproc = -1; (* nil pointer for ptype references *)
 main = 0; (* index of main process *)
 mainquant = 10000; (* quantum for main process *)
 tru = 1; (* integer value of true *)
 fals = 0; (* integer value of false *)
 charl = 32; (* lowest print character ordinal *)
 charh = 126; (* highest print character ordinal *)
 procmax = 200; (* maximum number of processes *)
 sentinel = 0; (* for communication statements *)
type
 ptype = nilproc .. pmax; (* index over processors *)
 proctype = 0 .. procmax;
 waitptr = ^waitnode;
 waitnode = record
 wait, signal : integer;
 next : waitptr
 end;
 qptr = ^qentry;
 qentry = record
 process : main .. pmax;
 channel : integer;
 direction : send .. purebool;
 comm : integer; (* expression or var address *)
 resume : integer; (* resumption address *)
 next,
 setlink : qptr (* circular set of comm requests *)
 end;
var
 ir : order; (* instruction buffer *)
 ps : (* processor status *)
 (run, timeout, sleep, suspended, kill, wakeup,
 fin, divchk, inxchk, stkchk, procchk, guardchk,
 linchk, lngchk, redchk, chanchk, deadlock, abort);
 lncnt, (* number of lines *)
 chrcnt : integer; (* number of characters in line *)
 h1, h2, h3, h4 : integer; (* local variables *)
 s : array[1..stmax] of integer; (* the stack *)
 numforks : integer; (* number of forks performed during program execution *)
 selcount : integer; (* no. of communications in select statement *)
 setptr : qptr; (* circular set of comm requests *)

 (* processor table --- one entry for each processor *)
 ptab : array[0..pmax] of
 record (* process descriptor *)
 procno : proctype; (* unique process identifier *)
 parent : ptype;

 91

 childcount : integer;
 status : free .. sleeping;
 blocker : integer; (* index of semaphore *)
 nextp : ptype;
 t, b, (* top, bottom of stack *)
 pc, (* program counter *)
 stacklimit : integer;
 display : array[1..lmax] of integer;
 tstart : integer; (* time process began *)
 timer : integer; (* no. of instructions executed *)
 tblocked : integer; (* time process blocked on last wait *)
 totalwait : integer (* total time spent waiting *)
 end;
 freetop : ptype; (* top of free blocks list *)
 lastready : ptype; (* circular ready process queue *)
 lastpr, (* previous running process *)
 relpr, (* released process to be waked up *)
 childpr, (* newly forked child process *)
 runpr : ptype; (* current running process *)
 stepcount : integer; (* number of steps before timeout *)
 seed : integer; (* random seed *)
 lock : boolean; (* to suppress timeouts *)
 stkincr, (* stacksize per process *)
 Indent : integer; (* for trace printouts per process *)
 inserted : boolean; (* to re-insert a process into Ready Q *)
 before, after : ptype; (* pointers into Ready Q *)
 clock, (* clock of process to be inserted *)
 afterclock : integer; (* clock of process pointed to by after *)
 serviced : boolean; (* to find a serviceable comm request *)
 last, tmpptr : qptr;

 (* summary table of processes *)
 sumtab : array[proctype] of
 record
 processor_used : 0 .. pmax;
 start,
 running,
 waiting : integer;
 waitlist : waitptr
 end;
 proccount : proctype; (* index to sumtab *)

 (* channel table *)
 chantab : array[1..tmax] of
 record
 owner : ptype;
 uniqueowner : nilproc .. procmax;
 sendcount : integer;
 sendq,
 receiveq : qptr
 end;

procedure RuntimeSummary;
 var i : integer;
 runsum, waitsum, elapsum : longint;
begin
 runsum := 0; waitsum := 0; elapsum := 0;
 writeln;
 writeln('RUNTIME SUMMARY:');
 writeln;
 writeln('Process# /');

 92

 write ('Processor used Start Run time Time waiting ');
 writeln('Finish Elapsed time');
 for i := 0 to proccount do
 with sumtab[i] do
 begin
 writeln(i:5, '/':3, processor_used:4, start:10, running:10,
 waiting:14, start+running+waiting:13, running+waiting:12);
 runsum := runsum + running;
 waitsum := waitsum + waiting;
 elapsum := elapsum + running + waiting
 end;
 writeln('--------------', '----':18, '----':14, '----':25);
 writeln('TOTALS:', runsum:25, waitsum:14, elapsum:25)
end; (* RuntimeSummary *)

procedure RelUtilization;
 var i : integer;
 runsum, waitsum : longint;
begin
 runsum := 0; waitsum := 0;
 writeln;
 writeln;
 writeln('RELATIVE UTILIZATION PERCENTAGES (across processes):');
 writeln;
 writeln('Process# Run/ Run+Wait = Utilization');
 for i := 0 to proccount do
 with sumtab[i] do
 begin
 writeln(i:5, running:10, '/', running:4, '+', waiting:4, '=':3,
 running/(running+waiting)*100:9:1, '%');
 runsum := runsum + running;
 waitsum := waitsum + waiting
 end;
 writeln('--------', '--------------':17, '------':13);
 writeln('TOTALS:', runsum:8, '/', runsum:4, '+', waitsum:4, '=':3,
 runsum/(runsum+waitsum)*100:9:1, '%');
 writeln;
 writeln('GRANULARITY of this application =');
 writeln('ratio of concurrency overhead to actual work being performed =');
 write (numforks * 5, ' / ', runsum, ' = ');
 writeln(numforks * 5 / runsum * 100 :5:1, '%');
 writeln('(High percentage = Fine-grained; Low percentage = Coarse-grained)')
end; (* RelUtilization *)

procedure AbsUtilization;
 var used : set of 0..pmax;
 curproc, run, wait, idle, last, i, no_procs : longint;
 runsum, waitsum, idlesum, checksum : longint;
 AbsUtilTab : array[0..pmax] of
 record R, W, I : longint end;

 procedure BarChart;
 var count, len, j, k : integer;
 ratio, rlen : real;
 begin
 ratio := 70 / (sumtab[main].start+sumtab[main].running+
 sumtab[main].waiting);
 writeln;
 writeln('Processor Utilization Graph');
 for j := 0 to no_procs do
 begin

 93

 count := 0;
 write(j:5, ' ':5);
 rlen := AbsUtilTab[j].R * ratio;
 if (rlen < 1) and (rlen > 0) then rlen := 1;
 len := round(rlen);
 for k := 1 to len do
 begin
 count := count + 1;
 if count <= 70 then write(chr(219)) (* Run *)
 end;
 rlen := AbsUtilTab[j].W * ratio;
 if (rlen < 1) and (rlen > 0) then rlen := 1;
 len := round(rlen);
 for k := 1 to len do
 begin
 count := count + 1;
 if count <= 70 then write(chr(177)) (* Wait *)
 end;
 for k := count+1 to 70 do write('-'); (* Idle *)
 writeln;
 writeln
 end;
 writeln(' ':10, chr(219), chr(219), chr(219), chr(219), chr(219),
 ' = Run', ' ':17, chr(177), chr(177), chr(177), chr(177),
 chr(177), ' = Wait', ' ':17, '----- = Idle')
 end; (* BarChart *)

begin
 no_procs := -1;
 runsum := 0; waitsum := 0; idlesum := 0;
 used := [];
 writeln;
 writeln;
 writeln('ABSOLUTE UTILIZATION PERCENTAGES & GRAPHS (across processors):');
 writeln;
 writeln('Processor Run+Wait/ Run+Wait+Idle = Utilization');
 for curproc := 0 to proccount do
 if not (sumtab[curproc].processor_used in used) then
 begin
 run := 0;
 wait := 0;
 idle := 0;
 used := used + [sumtab[curproc].processor_used];
 for i := curproc to proccount do
 if sumtab[i].processor_used = sumtab[curproc].processor_used then
 begin
 if run = 0 then
 idle := idle + sumtab[i].start
 else
 idle := idle + sumtab[i].start - (sumtab[last].start +
 sumtab[last].running + sumtab[last].waiting);
 last := i;
 run := run + sumtab[i].running;
 wait := wait + sumtab[i].waiting
 end;
 idle := idle + sumtab[main].start + sumtab[main].running +
 sumtab[main].waiting - (sumtab[last].start +
 sumtab[last].running + sumtab[last].waiting);
 writeln(sumtab[curproc].processor_used:5, run:11, '+', wait:4, '/',
 run:4, '+', wait:4, '+', idle:4, '=':3,
 (run+wait)/(run+wait+idle)*100:9:1, '%');

 94

 with AbsUtilTab[sumtab[curproc].processor_used] do
 begin
 R := run; W := wait; I := idle
 end;
 no_procs := no_procs + 1;
 runsum := runsum + run;
 waitsum := waitsum + wait;
 idlesum := idlesum + idle
 end;
 writeln('---------', '------------------------':27, '------':13);
 writeln('TOTALS:', runsum:9, '+', waitsum:4, '/', runsum:4, '+', waitsum:4,
 '+', idlesum:4, '=':3,
 (runsum+waitsum)/(runsum+waitsum+idlesum)*100:9:1, '%');
 checksum := sumtab[main].start + sumtab[main].running + sumtab[main].waiting;
 for i := 0 to no_procs do (* consistency check *)
 if (AbsUtilTab[i].R+AbsUtilTab[i].W+AbsUtilTab[i].I) <> checksum then
 writeln('-- Error in consistency of Run, Wait, & Idle times for ',
 'processor ', i, ' --');
 BarChart
end; (* AbsUtilization *)

procedure DisplayGraph;
 var time, endofprog, spaces, dashes, x : integer;
 displayincr : integer; (* time increment for graph display *)
 slotempty : boolean;
 process : proctype;
 processor : 0 .. pmax;
 ptr : waitptr;
begin
 writeln;
 writeln;
 endofprog := sumtab[main].start+sumtab[main].running+sumtab[main].waiting;
 time := 0;
 if ((endofprog+1) > 132) and Adaptive then
 displayincr := (endofprog+1) div 100
 else
 displayincr := 1;
 writeln('RUNTIME GRAPH:');
 write('---- ');
 spaces := pmax * 5 + 1;
 if pmax > 9 then
 spaces := spaces + pmax - 9;
 dashes := spaces - 12;
 for x := 1 to (dashes div 2) do
 write('-');
 write(' Processors ');
 for x := 1 to (dashes div 2) do
 write('-');
 if ((dashes div 2) * 2) <> dashes then
 write('-');
 writeln;
 write('Time');
 for processor := 0 to pmax do
 write(' ', processor);
 writeln;
 write('---- -');
 for processor := 1 to pmax do
 begin
 write('-----');
 if processor > 9 then write('-')
 end;

 95

 writeln;
 while time < endofprog do
 begin
 write(time:4);
 for processor := 0 to pmax do
 begin
 slotempty := true;
 process := 0;
 while slotempty do
 begin
 if (sumtab[process].processor_used = processor) and
 (sumtab[process].start <= time) and
 (time < (sumtab[process].start+sumtab[process].running+
 sumtab[process].waiting)) then
 begin
 ptr := sumtab[process].waitlist;
 while (ptr <> nil) and slotempty do
 if (ptr^.wait <= time) and
 (time < ptr^.signal) then
 begin
 write('.':5);
 slotempty := false
 end
 else
 ptr := ptr^.next;
 if slotempty then
 begin
 write(process:5);
 slotempty := false
 end
 end
 else
 begin
 process := process + 1;
 if process > proccount then
 begin
 write(' ':5);
 slotempty := false
 end
 end
 end
 end;
 time := time + displayincr;
 writeln
 end;
 write(endofprog:4);
 if ps <> fin then writeln('HALT':(runpr*(Indent+1)+Indent+4))
 else writeln
end; (* DisplayGraph *)

procedure AddWait(id : ptype; time : integer);
 var ptr : waitptr;
begin
 ptr := sumtab[ptab[id].procno].waitlist;
 if ptr = nil then
 begin
 new(sumtab[ptab[id].procno].waitlist);
 sumtab[ptab[id].procno].waitlist^.wait := time;
 sumtab[ptab[id].procno].waitlist^.next := nil
 end
 else

 96

 begin
 while ptr^.next <> nil do
 ptr := ptr^.next;
 new(ptr^.next);
 ptr^.next^.wait := time;
 ptr^.next^.next := nil
 end
end; (* AddWait *)

procedure AddSignal(id : ptype; time : integer);
 var ptr : waitptr;
begin
 ptr := sumtab[ptab[id].procno].waitlist;
 while ptr^.next <> nil do
 ptr := ptr^.next;
 ptr^.signal := time
end; (* AddSignal *)

procedure DumpWaitlist;
 var ptr : waitptr;
 i : integer;
begin
 writeln;
 writeln('Dump Waitlist:');
 for i := 0 to proccount do
 begin
 write(i:2, ') ');
 ptr := sumtab[i].waitlist;
 if ptr = nil then write('No waits.')
 else
 while ptr <> nil do
 begin
 write(ptr^.wait, ' & ', ptr^.signal);
 ptr := ptr^.next;
 if ptr <> nil then write(' / ')
 end;
 writeln
 end
end; (* DumpWaitlist *)

procedure DumpSumtab;
 var i : integer;
begin
 writeln;
 writeln('Dump Sumtab:');
 for i := 0 to proccount do
 with sumtab[i] do
 writeln('sumtab[', i:2, '] processor_used=', processor_used:3,
 ' start=', start:4, ' running=', running:4,
 ' waiting=', waiting:4)
end; (* DumpSumtab *)

procedure AddReady(new : ptype);
 (* assumes non-empty Ready Q *)
 var follow : ptype;
begin
 follow := ptab[lastready].nextp;
 ptab[lastready].nextp := new;
 with ptab[new] do
 begin
 nextp := follow;

 97

 status := ready;
 blocker := 0
 end;
 lastready := new
end; (* AddReady *)

procedure RemoveReady;
begin
 if lastready = runpr then
 lastready := nilproc (* now empty *)
 else
 ptab[lastready].nextp := ptab[runpr].nextp
end; (* RemoveReady *)

procedure Suspend(sema : integer);
 var lastw, follow : ptype;
begin
 with ptab[runpr] do begin
 status := semablock;
 blocker := sema;
 tblocked := tstart + timer + totalwait;
 AddWait(runpr, tblocked)
 end;
 lastw := s[sema+1];
 if lastw = nilproc then
 ptab[runpr].nextp := runpr
 else
 begin
 follow := ptab[lastw].nextp;
 ptab[lastw].nextp := runpr;
 ptab[runpr].nextp := follow
 end;
 s[sema+1] := runpr;
end; (* Suspend *)

procedure Release(sema : integer); (* assuming someone waits *)
 var lastw : ptype;
 time : integer;
begin
 lastw := s[sema+1];
 relpr := ptab[lastw].nextp;
 if relpr = lastw then
 s[sema+1] := nilproc
 else
 ptab[lastw].nextp :=
 ptab[relpr].nextp;
 with ptab[relpr] do begin
 time := ptab[runpr].tstart + ptab[runpr].timer + ptab[runpr].totalwait;
 tblocked := time - tblocked;
 totalwait := totalwait + tblocked
 end; (* with *)
 AddSignal(relpr, time)
end; (* Release *)

procedure EnQueue(tos, reqno : integer; var last : qptr; base : boolean);
 var ptr, delptr : qptr;

 procedure FillNode(node : qptr; var last : qptr);
 begin
 with node^ do
 begin

 98

 direction := s[tos];
 process := s[tos-2];
 channel := s[tos-3];
 comm := s[tos-4];
 resume := s[tos-1];
 next := nil;
 with ptab[process] do begin
 if reqno = 1 then
 begin
 setptr := node;
 setlink := node;
 last := node
 end
 else if base then
 begin
 last^.setlink := node;
 setlink := setptr
 end
 else
 begin
 last^.setlink := node;
 last := node
 end
 end
 end
 end; (* FillNode *)

begin (* EnQueue *)
 if s[tos] = send then
 begin
 while chantab[s[tos-3]].sendq^.channel = -1 do
 begin
 delptr := chantab[s[tos-3]].sendq;
 with chantab[s[tos-3]] do sendq := sendq^.next;
 delptr^.next := nil;
 dispose(delptr)
 end;
 with chantab[s[tos-3]] do begin
 ptr := sendq;
 sendcount := sendcount + 1
 end
 end
 else if s[tos] = receive then
 ptr := chantab[s[tos-3]].receiveq
 else (* pure Boolean *)
 new(ptr);
 if s[tos] = purebool then
 FillNode(ptr, last)
 else if ptr = nil then
 begin
 new(ptr);
 if s[tos] = send then
 chantab[s[tos-3]].sendq := ptr
 else (* receive *)
 chantab[s[tos-3]].receiveq := ptr;
 FillNode(ptr, last)
 end
 else
 begin
 while ptr^.next <> nil do
 ptr := ptr^.next;

 99

 new(ptr^.next);
 FillNode(ptr^.next, last)
 end
end; (* EnQueue *)

procedure CancelNodes(dirptr : qptr);
 var delptr, start : qptr;
 numlinks, x : integer;
begin
 numlinks := 0;
 start := dirptr;
 repeat
 numlinks := numlinks + 1;
 dirptr := dirptr^.setlink
 until dirptr = start;
 for x := 1 to numlinks do
 if dirptr^.direction = send then
 begin
 with chantab[dirptr^.channel] do sendcount := sendcount - 1;
 dirptr^.channel := -1;
 delptr := dirptr;
 dirptr := dirptr^.setlink;
 delptr^.setlink := delptr
 end
 else if dirptr^.direction = receive then
 begin
 delptr := dirptr;
 dirptr := dirptr^.setlink;
 chantab[delptr^.channel].receiveq := nil;
 dispose(delptr)
 end
 else (* pure Boolean *)
 begin
 delptr := dirptr;
 dirptr := dirptr^.setlink;
 dispose(delptr)
 end
end; (* CancelNodes *)

procedure Rendezvous(ptr : qptr);
 var sendptr, recptr : qptr;
 chanid, wakeup1, wakeup2, time : integer;

begin (* Rendezvous *)
 chanid := ptr^.channel;
 sendptr := chantab[chanid].sendq;
 recptr := chantab[chanid].receiveq;
 s[recptr^.comm] := sendptr^.comm; (* exchange *)
 time := ptab[runpr].tstart + ptab[runpr].timer + ptab[runpr].totalwait;
 wakeup1 := sendptr^.process;
 wakeup2 := recptr^.process;
 if (ptab[wakeup1].status <> ready) and (ptab[wakeup1].status <> running) then
 begin
 AddReady(wakeup1);
 with ptab[wakeup1] do
 begin
 tblocked := time - tblocked;
 totalwait := totalwait + tblocked
 end;
 AddSignal(wakeup1, time)
 end;

 100

 ptab[wakeup1].pc := sendptr^.resume;
 if (ptab[wakeup2].status <> ready) and (ptab[wakeup2].status <> running) then
 begin
 AddReady(wakeup2);
 with ptab[wakeup2] do
 begin
 tblocked := time - tblocked;
 totalwait := totalwait + tblocked
 end;
 AddSignal(wakeup2, time)
 end;
 ptab[wakeup2].pc := recptr^.resume;
 CancelNodes(sendptr);
 CancelNodes(recptr)
end; (* Rendezvous *)

procedure WaitforRen(dir, ch : integer); (* Wait for Rendezvous *)
begin
 RemoveReady;
 with ptab[runpr] do
 begin
 case dir of
 send : status := sendblock;
 receive : status := recblock;
 select : status := selblock
 end;
 blocker := ch;
 tblocked := tstart + timer + totalwait;
 AddWait(runpr, tblocked)
 end;
 ps := suspended
end; (* WaitforRen *)

procedure ReportProcess(id : ptype);
 (* retain vital information of each process before *)
 (* returning its process block to the free list *)
begin
 with sumtab[ptab[id].procno] do
 begin
 processor_used := id;
 start := ptab[id].tstart;
 running := ptab[id].timer;
 waiting := ptab[id].totalwait
 end
end; (* ReportProcess *)

procedure nextproc;
 (* schedule next running process via round-robin *)
begin
 (* circular shift of ready queue *)
 lastready := ptab[lastready].nextp;
end; (* nextproc *)

procedure setquantum;
begin
 if runpr = main then stepcount := mainquant
 else stepcount := quantmin + trunc(random*quantwidth)
end; (* setquantum *)

(* functions to convert integers to booleans and conversely *)

 101

function itob(i : integer) : boolean;
begin
 itob := (i = tru)
end;

function btoi(b : boolean) : integer;
begin
 if b then btoi := tru else btoi := fals
end;

procedure PostMortemDump;
 var i, tt : integer;
 ptr : qptr;
begin
 writeln; writeln;
 with ptab[runpr] do
 write('Halt at ', pc, ' in process ', runpr, ' because of ');
 case ps of
 deadlock : writeln('deadlock');
 guardchk : writeln('false guards in select statement');
 divchk : writeln('division by zero');
 inxchk : writeln('invalid index');
 stkchk : writeln('storage overflow');
 linchk : writeln('too much output');
 lngchk : writeln('line too long');
 redchk : writeln('reading past end of file');
 procchk: writeln('too many process forks');
 chanchk: writeln('illegal channel access');
 abort : writeln('programmer abort')
 end;
 writeln; writeln;
 writeln(' Process Status Blocker PC Run Wait ');
 for i := 0 to pmax do with ptab[i] do
 if status <> free then
 begin
 if (status <> running) and (status <> ready) then
 begin
 tt:=ptab[runpr].tstart+ptab[runpr].timer+
 ptab[runpr].totalwait;
 tblocked := tt - tblocked;
 totalwait := totalwait + tblocked;
 AddSignal(i, tt)
 end;
 ReportProcess(i);
 writeln;
 write(procno:4, ') ');
 case status of
 running : write('HALT ');
 ready : write('run ');
 semablock : write('wait sem ', blocker:2);
 sendblock : write('send ch ', blocker:2, ' ');
 recblock : write('receive ch ', blocker:2, ' ');
 selblock : write('guard ');
 sleeping : write('sleep sleep ')
 end;
 writeln(pc:7, timer:7, totalwait:8)
 end;
 writeln;
 writeln; writeln('Global Variables:');
 writeln('NAME TYPE OFFSET VALUE COMMENT');
 writeln('---- ---- ------ ----- -------');

 102

 write ('FBsema special 5', s[5]:11, ' ':4);
 if s[6] = -1 then writeln('Free process blocks still available')
 else writeln('No free block available for pr ', s[6]);
 for i := btab[1].last+1 to tmax do
 with tab[i] do
 if (lev = 1) and (obj = variable) then
 if typ in stantyps then
 case typ of
 ints : writeln(name, ' integer ', adr:4, s[adr]:11);
 bools : writeln(name,' boolean ', adr:4,itob(s[adr]):11);
 chars : writeln(name, ' character ', adr:4,
 chr(s[adr] mod 256):11);
 semas : begin
 write(name,' semaphore ',adr:4,s[adr]:11, ' ':4);
 if s[adr+1] = -1 then
 writeln('Not blocking any process')
 else writeln('Blocking process ', s[adr+1])
 end;
 chans : begin
 write(name, ' channel ', adr:4, ' ':15);
 if chantab[i].uniqueowner = nilproc then
 writeln('Channel not owned')
 else
 writeln('Owner = process ',
 chantab[i].uniqueowner);
 write(' ':42);
 if chantab[i].receiveq = nil then write('No r')
 else write('R');
 writeln('eceives are pending');
 write(' ':42);
 if chantab[i].sendcount = 0 then
 writeln('No sent messages are pending')
 else
 begin
 writeln('Sent messages pending:');
 ptr := chantab[i].sendq;
 while ptr <> nil do
 begin
 if ptr^.channel <> -1 then
 writeln(ptr^.comm:48,
 ' from process ',
 ptr^.process);
 ptr := ptr^.next
 end
 end
 end
 end
end; (* PostMortemDump *)

begin (* interpret *)
 numforks := 0;
 proccount := 0;
 stkincr := (stmax-mainsize) div pmax; (* partition the stack *)
 Indent := 50 div (pmax+1); (* avoid wrap for tracing *)
 (* initialize the main process *)
 s[1] := 0; s[2] := 0; s[3] := -1; s[4] := btab[1].last;
 with ptab[main] do (* main process block *)
 begin
 procno := proccount; (* main process will be 0 *)
 parent := nilproc; childcount := 0;
 status := running; blocker := 0;

 103

 nextp := nilproc;
 b := 0; display[1] := 0;
 t := btab[2].vsize-1; pc := tab[s[4]].adr;
 stacklimit := mainsize;
 tstart := 0;
 timer := 0;
 tblocked := 0;
 totalwait := 0
 end;

 (* initialize the free block list *)
 for h1 := 1 to pmax do with ptab[h1] do
 begin
 if h1 < pmax then nextp := h1+1
 else nextp := nilproc;
 status := free;
 b := ptab[h1-1].stacklimit+1;
 stacklimit := b+stkincr-1;
 timer := 0;
 tblocked := 0;
 totalwait := 0
 end;
 freetop := 1;

 (* initialize sumtab's waitlist *)
 for h1 := 0 to procmax do
 sumtab[h1].waitlist := nil;

 (* initialize channel table *)
 for h1 := 1 to tmax do with chantab[h1] do
 begin
 owner := nilproc; (* no one owns this channel *)
 uniqueowner := nilproc;
 sendcount := 0;
 sendq := nil;
 receiveq := nil
 end;

 (* initialize ready process queue to main alone *)
 lastready := main;
 ptab[main].nextp := main;
 runpr := main;
 if USEQUANTUM then
 setquantum
 else
 stepcount := 0;

 (* initialize FBsema *)
 s[5] := pmax; s[6] := nilproc;

 lock := false;
 randomize;
 lncnt := 0; chrcnt := 0;
 repeat
 ps := run;
 with ptab[runpr] do
 begin
 ir := code[pc];
 pc := pc+1;
 end;

 104

 with ptab[runpr] do
 begin
 timer := timer + 1;
 case ir.f of

 0 : begin (* load address *)
 t := t+1;
 if t > stacklimit then ps := stkchk
 else s[t] := display[ir.x] + ir.y
 end;

 1 : begin (* load value *)
 t := t+1;
 if t > stacklimit then ps := stkchk
 else s[t] := s[display[ir.x] + ir.y]
 end;

 2 : begin (* load indirect *)
 t := t+1;
 if t > stacklimit then ps := stkchk
 else s[t] := s[s[display[ir.x] + ir.y]]
 end;

 3 : begin (* update display *)
 h1 := ir.y; h2 := ir.x; h3 := b;
 repeat
 display[h1] := h3; h1 := h1-1; h3 := s[h3+2]
 until h1 = h2
 end;

 4 : begin (* fork new child process *)
 numforks := numforks + 1;
 childpr := freetop;
 freetop := ptab[freetop].nextp;
 AddReady(childpr);
 if TRACE then
 writeln(' ':Indent*runpr,
 'FORK ', childpr, ' at ', pc);
 proccount := proccount + 1;
 with ptab[childpr] do
 begin
 procno := proccount;
 parent := runpr;
 childcount := 0;
 pc := ptab[runpr].pc+1; (* after TRA *)
 t := b-1;
 (* inherit parent's environment *)
 tstart := ptab[parent].tstart + ptab[parent].timer +
 ptab[parent].totalwait;
 timer := 0; tblocked := 0; totalwait := 0;
 for h1 := 1 to ir.y do
 display[h1] := ptab[runpr].display[h1];
 ptab[parent].childcount :=
 ptab[parent].childcount+1
 end
 end;

 5 : begin (* kill terminates child process *)
 if TRACE then
 writeln(' ':Indent*runpr,
 'KILL ', runpr, ' at ', pc);

 105

 ptab[parent].childcount :=
 ptab[parent].childcount-1;
 if (ptab[parent].childcount = 0) and
 (ptab[parent].status = sleeping) then (* awaken parent *)
 begin
 ptab[parent].status := ready;
 ptab[parent].tblocked := tstart + timer + totalwait -
 ptab[parent].tblocked;
 ptab[parent].totalwait := ptab[parent].totalwait +
 ptab[parent].tblocked;
 AddSignal(parent, tstart+timer+totalwait);
 AddReady(parent)
 end;
 RemoveReady;
 ReportProcess(runpr);
 (* signal FBsema *)
 if TRACE then
 writeln(' ':Indent*runpr, 'SIGNAL FB',
 ' at ', pc);
 if s[6] = nilproc then
 s[5] := s[5]+1
 else
 begin
 Release(5);
 AddReady(relpr);
 if WAKESEM then
 begin (* awaken waiting process *)
 while ptab[lastready].nextp <> relpr do
 lastready := ptab[lastready].nextp;
 if TRACE then
 writeln(' ':Indent*runpr, 'WAKEUP ',
 relpr);
 ps := wakeup
 end
 else if TRACE then
 writeln(' ':Indent*runpr, 'RELEASE ',
 relpr)
 end;
 ps := kill;
 (* add to free list *)
 status := free;
 nextp := freetop; freetop := runpr
 end;

 6 : begin (* semaphore wait *)
 h1 := s[t]; t := t-1;
 if s[h1] > 0 then
 begin
 s[h1] := s[h1]-1;
 if TRACE then
 writeln(' ':Indent*runpr, 'PASS ', h1,
 ' at ', pc)
 end
 else
 begin (* suspend running process *)
 RemoveReady;
 Suspend(h1);
 if TRACE then
 writeln(' ':Indent*runpr, 'SUSPEND ', h1,
 ' at ', pc);
 ps := suspended

 106

 end
 end;

 7 : begin (* semaphore signal *)
 h1 := s[t]; t := t-1;
 if TRACE then
 writeln(' ':Indent*runpr, 'SIGNAL ', h1,
 ' at ', pc);
 if s[h1+1] = nilproc then
 (* noone awaits this signal *)
 s[h1] := s[h1]+1
 else
 begin (* someone awaits this signal *)
 Release(h1);
 AddReady(relpr);
 if TRACE then
 writeln(' ':Indent*runpr, 'Time waiting = ',
 ptab[relpr].tblocked, ' for ', h1);
 ptab[relpr].tblocked := 0;
 if WAKESEM then
 begin (* awaken waiting process *)
 while ptab[lastready].nextp <> relpr do
 lastready := ptab[lastready].nextp;
 if TRACE then
 writeln(' ':Indent*runpr, 'WAKEUP ',
 relpr);
 ps := wakeup
 end
 else if TRACE then
 writeln(' ':Indent*runpr, 'RELEASE ',
 relpr)
 end
 end;

 8 : case ir.y of
 17 : begin
 t := t+1;
 if t > stacklimit then ps := stkchk
 else s[t] := btoi(eof(Keys))
 end;
 18 : begin
 t := t+1;
 if t > stacklimit then ps := stkchk
 else s[t] := btoi(eoln(Keys))
 end;
 end;

 9 : begin (* put parent process to sleep *)
 if childcount > 0 then
 begin
 tblocked := tstart + timer + totalwait;
 AddWait(runpr, tblocked);
 RemoveReady;
 if TRACE then
 writeln(' ':Indent*runpr, 'SLEEP ',
 runpr, ' at ', pc);
 status := sleeping;
 ps := sleep
 end;
 end;

 107

 10 : pc := ir.y; (* jump *)

 11 : begin (* conditional jump *)
 if s[t] = fals then pc := ir.y;
 t := t-1
 end;

 12 : begin (* block all timeouts *)
 lock := true
 end;

 13 : begin (* allow timeouts again *)
 lock := false
 end;

 14 : begin (* for1up *)
 h1 := s[t-1];
 if h1 <= s[t] then s[s[t-2]] := h1
 else
 begin t := t-3; pc := ir.y end
 end;

 15 : begin (* for2up *)
 h2 := s[t-2]; h1 := s[h2]+1;
 if h1 <= s[t] then
 begin s[h2] := h1; pc := ir.y end
 else t := t-3
 end;

 17 : ps := abort; (* abort *)

 18 : begin (* mark stack *)
 h1 := btab[tab[ir.y].ref].vsize;
 if t+h1 > stacklimit then ps := stkchk
 else
 begin t := t+5; s[t-1] := h1-1; s[t] := ir.y end
 end;

 19 : begin (* call *)
 h1 := t-ir.y;
 h2 := s[h1+4]; (* h2 points to tab *)
 if TRACE then
 writeln(' ':Indent*runpr,
 'CALL ', tab[h2].name);
 h3 := tab[h2].lev; display[h3+1] := h1;
 h4 := s[h1+3]+h1;
 s[h1+1] := pc; s[h1+2] := display[h3];
 s[h1+3] := b;
 for h3 := t+1 to h4 do s[h3] := 0;
 b := h1; t := h4; pc := tab[h2].adr
 end;

 21 : begin (* index *)
 h1 := ir.y; (* h1 points to atab *)
 h2 := atab[h1].low; h3 := s[t];
 if h3 < h2 then ps := inxchk
 else if h3 > atab[h1].high then ps := inxchk
 else
 begin
 t := t-1;
 s[t] := s[t] + (h3-h2)*atab[h1].elsize

 108

 end
 end;

 22 : begin (* load block *)
 h1 := s[t]; t := t-1; h2 := ir.y+t;
 if h2 > stacklimit then ps := stkchk
 else
 while t<h2 do
 begin
 t := t+1; s[t] := s[h1]; h1 := h1+1
 end
 end;

 23 : begin (* copy block *)
 h1 := s[t-1]; h2 := s[t]; h3 := h1+ir.y;
 while h1 < h3 do
 begin
 s[h1] := s[h2];
 h1 := h1+1; h2 := h2+1
 end;
 t := t-2
 end;

 24 : begin (* literal *)
 t := t+1;
 if t > stacklimit then ps := stkchk
 else s[t] := ir.y
 end;

 27 : begin (* read *)
 if eof(Keys) then ps := redchk
 else
 case ir.y of
 1 : read(Keys,s[s[t]]);
 3 : begin read(Keys,ch); s[s[t]] := ord(ch) end
 end;
 t := t-1
 end;

 28 : begin (* write string *)
 h1 := s[t]; h2 := ir.y; t := t-1;
 chrcnt := chrcnt+h1;
 if chrcnt > lineleng then ps := lngchk;
 repeat
 write(stab[h2]);
 h1 := h1-1; h2 := h2+1
 until h1=0
 end;

 29 : begin (* write1 *)
 if ir.y=3 then h1 := 1 else h1 := 10;
 chrcnt := chrcnt+h1;
 if chrcnt > lineleng then ps := lngchk
 else
 case ir.y of
 1 : write(s[t]:6);
 2 : write(itob(s[t]));
 3 : if (s[t] < charl) or (s[t] > charh) then
 ps := inxchk
 else write(chr(s[t]))
 end;

 109

 t := t-1
 end;

 31 : ps := fin; (* halt *)

 32 : begin (* exit procedure *)
 t := b-1; pc := s[b+1];
 b := s[b+3]
 end;

 33 : begin (* exit function *)
 t := b; pc := s[b+1]; b := s[b+3]
 end;

 34 : s[t] := s[s[t]];

 35 : s[t] := btoi(not itob(s[t]));

 36 : s[t] := -s[t];

 37 : begin (* duplicate *)
 t := t+1;
 if t>stacklimit then ps := stkchk
 else s[t] := s[t-1]
 end;

 38 : begin (* store *)
 s[s[t-1]] := s[t]; t := t-2
 end;

 40 : begin (* comm *)
 selcount := 0;
 setptr := nil;
 if s[t] = sentinel then
 ps := guardchk
 else if ((s[t] = send) and (chantab[s[t-3]].owner = runpr)) or
 ((s[t]=receive) and (chantab[s[t-4]].owner<>runpr)) then
 ps := chanchk
 else
 begin
 last := nil;
 while s[t] <> sentinel do
 begin
 if s[t] = receive then (* swap addr & chan *)
 begin
 h1 := s[t-3];
 s[t-3] := s[t-4];
 s[t-4] := h1
 end;
 selcount := selcount + 1;
 EnQueue(t, selcount, last, (s[t-5]=sentinel));
 t := t-5
 end;
 h1 := random(selcount);
 for h4 := 1 to h1 do
 setptr := setptr^.setlink; (* pick a comm stmt *)
 tmpptr := setptr;
 serviced := false;
 repeat
 h2 := tmpptr^.channel;
 if h2 = 0 then

 110

 begin
 pc := tmpptr^.resume;
 serviced := true;
 CancelNodes(tmpptr)
 end
 else if (chantab[h2].sendcount <> 0) and
 (chantab[h2].receiveq <> nil) then
 begin
 Rendezvous(tmpptr);
 serviced := true
 end
 else
 tmpptr := tmpptr^.setlink
 until serviced or (tmpptr = setptr);
 if not serviced then
 if ir.y = select then (* comm is part of guard *)
 WaitforRen(select, 0)
 else (* normal comm *)
 WaitforRen(s[t+5], tab[s[t+2]].adr);
 t := t-1 (* pop sentinel *)
 end
 end;

 41 : begin (* post *)
 s[t+1] := runpr;
 s[t+2] := pc + 1;
 s[t+3] := ir.y; (* send/receive *)
 t := t+3
 end;

 42 : begin (* getchannel *)
 chantab[s[t]].owner := runpr;
 chantab[s[t]].uniqueowner := ptab[runpr].procno;
 t := t-1
 end;

 43 : begin (* post pure Boolean *)
 s[t+1] := 0; (* comm *)
 s[t+2] := 0; (* channel *)
 s[t+3] := runpr; (* process *)
 s[t+4] := pc + 1; (* resume *)
 s[t+5] := purebool; (* direction *)
 t := t+5
 end;

 45 : begin t := t-1; s[t] := btoi(s[t]=s[t+1]) end;
 46 : begin t := t-1; s[t] := btoi(s[t]<>s[t+1]) end;
 47 : begin t := t-1; s[t] := btoi(s[t]<s[t+1]) end;
 48 : begin t := t-1; s[t] := btoi(s[t]<=s[t+1]) end;
 49 : begin t := t-1; s[t] := btoi(s[t]>s[t+1]) end;
 50 : begin t := t-1; s[t] := btoi(s[t]>=s[t+1]) end;
 51 : begin
 t := t-1;
 s[t] := btoi(itob(s[t]) or itob(s[t+1]))
 end;
 52 : begin t := t-1; s[t] := s[t]+s[t+1] end;
 53 : begin t := t-1; s[t] := s[t]-s[t+1] end;
 56 : begin
 t := t-1;
 s[t] := btoi(itob(s[t]) and itob(s[t+1]))
 end;

 111

 57 : begin t := t-1; s[t] := s[t]*s[t+1] end;
 58 : begin
 t := t-1;
 if s[t+1] = 0 then ps := divchk
 else s[t] := s[t] div s[t+1]
 end;
 59 : begin
 t := t-1;
 if s[t+1] = 0 then ps := divchk
 else s[t] := s[t] mod s[t+1]
 end;
 62 : if eof(Keys) then ps := redchk else readln(Keys);
 63 : begin
 writeln; lncnt := lncnt+1; chrcnt := 0;
 if lncnt > linelimit then ps := linchk
 end;

 end; (* case *)
 end; (* with *)
 lastpr := runpr;
 if stepcount > 0 then stepcount := stepcount-1;
 if lastready = nilproc then
 ps := deadlock
 else
 begin
 if (ps = run) and (stepcount = 0) and not lock then
 begin
 if TRACE then
 writeln(' ':Indent*runpr, 'TIMEOUT at ',
 ptab[runpr].pc);
 ps := timeout;
 if code[ptab[runpr].pc].f = 5 then
 begin
 inserted := false;
 with ptab[runpr] do
 clock := tstart + timer + totalwait;
 (* temporarily remove Runpr from Ready Q *)
 ptab[lastready].nextp := ptab[runpr].nextp;
 before := lastready;
 after := ptab[lastready].nextp;
 while not inserted do
 begin
 with ptab[after] do
 afterclock := tstart + timer + totalwait;
 if afterclock = clock then
 begin
 ptab[runpr].nextp := after;
 ptab[before].nextp := runpr;
 inserted := true
 end
 else
 begin
 before := ptab[before].nextp;
 after := ptab[after].nextp;
 if before = lastready then
 begin
 ptab[runpr].nextp := after;
 ptab[before].nextp := runpr;
 inserted := true;
 nextproc
 end

 112

 end
 end
 end
 else
 nextproc
 end;
 if ps in [timeout,kill,suspended,sleep,wakeup] then
 begin
 if ps = timeout then
 ptab[runpr].status := ready;
 runpr := ptab[lastready].nextp;
 ptab[runpr].status := running;
 if TRACE then
 begin
 writeln;
 writeln(' ':Indent*runpr, 'RESTART ',
 runpr, ' at ', ptab[runpr].pc)
 end;
 if USEQUANTUM then setquantum
 end
 end
 until not (ps in [run,timeout,sleep,suspended,kill,wakeup]);

 (* ps in [fin, xxxchk, or deadlock] *)

 writeln;
 if ps = fin then
 ReportProcess(main)
 else
 PostMortemDump;

 RuntimeSummary; (* Print times for all processes *)

 RelUtilization; (* Print relative utilization percentages *)

 AbsUtilization; (* Print absolute utilization percentages & graphs *)

 if ShowInternal then
 begin
 DumpSumtab; (* Print contents of Sumtab *)
 DumpWaitlist (* Print wait & signal times for each process *)
 end;

 DisplayGraph; (* Print graphical display of runtime use of processors *)

end; (* interpret *)

 113

 References

1. Akl, S.G. The Design and Analysis of Parallel Algorithms. Prentice-Hall. Englewood
 Cliffs, New Jersey. 1989.

2. Andrews, G.R. Concurrent Programming: Principles and Practice. Benjamin
 Cummings. Redwood City, California. 1991.

3. Ben-Ari, M. Principles of Concurrent Programming. Prentice-Hall. Englewood Cliffs,
 New Jersey. 1982.

4. Brinch Hansen, P. "The Programming Language Concurrent Pascal." IEEE
 Transactions on Software Engineering, 1 (Jun. 1975), 199-207.

5. Camillone, M. "Dataflow Programming: An Overview." Term paper for CS 691,
 Pace University. 1991.

6. Camillone, M. "Parallel Processing and Parallel Programming." Term paper for CS
 693, Pace University. 1991.

7. Collado, M., Morales, R., and Moreno, J.J. "A Modula-2 Implementation of CSP."
 ACM SIGPLAN Notices, 22 (Jun. 1987), 25-38.

8. Dijkstra, E.W. "Guarded Commands, Non-determinacy, and Formal Derivation of
 Programs." Communications of the ACM, 18 (Aug. 1975), 453-457.

9. Hoare, C.A.R. "Monitors: An Operating System Structuring Concept."
 Communications of the ACM, 17 (Oct. 1974), 549-557.

10. Hoare, C.A.R. "Communicating Sequential Processes." Communications of the ACM,
 21 (Aug. 1978), 666-677.

11. Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall. Englewood
 Cliffs, New Jersey. 1985.

12. INMOS Ltd. Occam Programming Manual. Prentice-Hall. Englewood Cliffs, New
 Jersey. 1984.

13. May, D. "Occam." ACM SIGPLAN Notices, 18 (Apr. 1983), 69-79.

14. Morales-Fernandez, R., and Moreno-Navarro, J.J. "CC-Modula: A Modula-2 Tool
 to Teach Concurrent Programming." ACM SIGCSE Bulletin, 21 (Sep. 1989), 19-25.

 114

15. Musciano, C. Letter to the editor. ACM SIGPLAN Notices, 22 (Jun. 1987), 2-3.

16. Perrott, R.H. Parallel Programming. Addison-Wesley. Wokingham, England. 1987.

17. Pountain, D. "Occam II." Byte, 14 (Oct. 1989), 279-284.

